Gotowa bibliografia na temat „C-H Activation and Domino Cyclization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „C-H Activation and Domino Cyclization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "C-H Activation and Domino Cyclization"
Park, Sunhwa, Kye Jung Shin i Jae Hong Seo. "Total Synthesis of Cyclopiamide A Using Palladium-Catalyzed Domino Cyclization". Molecules 25, nr 21 (23.10.2020): 4903. http://dx.doi.org/10.3390/molecules25214903.
Pełny tekst źródłaTran, Duc N., i Nicolai Cramer. "Highly Selective Rhodium Catalyzed Domino C–H Activation/Cyclizations". CHIMIA International Journal for Chemistry 65, nr 4 (27.04.2011): 271–73. http://dx.doi.org/10.2533/chimia.2011.271.
Pełny tekst źródłaSzalóki Vargáné, Dóra, László Tóth, Balázs Buglyó, Attila Kiss-Szikszai, Attila Mándi, Péter Mátyus, Sándor Antus i in. "[1,5]-Hydride Shift-Cyclization versus C(sp2)-H Functionalization in the Knoevenagel-Cyclization Domino Reactions of 1,4- and 1,5-Benzoxazepines". Molecules 25, nr 6 (11.03.2020): 1265. http://dx.doi.org/10.3390/molecules25061265.
Pełny tekst źródłaJeon, Woo Hyung, Jeong-Yu Son, Ji Eun Kim i Phil Ho Lee. "Synthesis of 1,2-Benzothiazines by a Rhodium-Catalyzed Domino C–H Activation/Cyclization/Elimination Process from S-Aryl Sulfoximines and Pyridotriazoles". Organic Letters 18, nr 14 (7.07.2016): 3498–501. http://dx.doi.org/10.1021/acs.orglett.6b01750.
Pełny tekst źródłaRamesh, Karu, i Gedu Satyanarayana. "A Domino Palladium-Catalyzed Cyclization: One-Pot Synthesis of 4b-Alkyl-10-phenyl-4b,5-dihydroindeno[2,1-a]indenes via Carbopalladation Followed by C–H Activation". Journal of Organic Chemistry 82, nr 8 (10.04.2017): 4254–64. http://dx.doi.org/10.1021/acs.joc.7b00254.
Pełny tekst źródłaWan, Jie-Ping, Yi Li i Yunyun Liu. "Annulation based on 8-aminoquinoline assisted C–H activation: an emerging tool in N-heterocycle construction". Organic Chemistry Frontiers 3, nr 6 (2016): 768–72. http://dx.doi.org/10.1039/c6qo00077k.
Pełny tekst źródłaCheng, Jiang, Xiaopeng Wu, Song Sun i Jin-Tao Yu. "Recent Applications of α-Carbonyl Sulfoxonium Ylides in Rhodium- and Iridium-Catalyzed C–H Functionalizations". Synlett 30, nr 01 (5.09.2018): 21–29. http://dx.doi.org/10.1055/s-0037-1610263.
Pełny tekst źródłaLotz, Florian, Klaus Kahle, Mehrnoush Kangani, Soundararasu Senthilkumar i Lutz F. Tietze. "Domino C-H Activation Reactions through Proximity Effects". European Journal of Organic Chemistry 2018, nr 40 (9.10.2018): 5562–69. http://dx.doi.org/10.1002/ejoc.201801289.
Pełny tekst źródłaCramer, N., i D. Tran. "Rhodium-Catalyzed Domino C-H Activation-Intramolecular Allylation of Imines". Synfacts 2011, nr 01 (21.12.2010): 0065. http://dx.doi.org/10.1055/s-0030-1259167.
Pełny tekst źródłaAhmad, Muhammad Siddique, Po-Han Lin, Qing Zhang, Bing Zeng, Qifeng Wang i Kamel Meguellati. "Visible Light Induced C-H/N-H and C-X Bonds Reactions". Reactions 4, nr 1 (2.03.2023): 189–230. http://dx.doi.org/10.3390/reactions4010012.
Pełny tekst źródłaRozprawy doktorskie na temat "C-H Activation and Domino Cyclization"
Zhu, Cuiju. "Sustainable Synthesis by 3d Transition Metal Electro-Catalyzed C─H Activation". Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-12F3-4.
Pełny tekst źródłaEichhorst, Christoph. "Untersuchungen zur Synthese fluoreszenzaktiver aromatischer Polyzyklen durch Palladium-katalysierte Domino-C‒H-Aktivierungen". Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://hdl.handle.net/11858/00-1735-0000-0023-993C-7.
Pełny tekst źródłaPiou, Tiffany. "Développement de nouvelles réactions domino impliquant une étape de fonctionnalisation C-H pour la synthèse d'hétérocycles". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112424.
Pełny tekst źródłaThe projet consists in developing new domino processes involving C-H functionalization as the key steps. The introduction of C-H functionalization in the domino reaction leads to the enhancing significantly the efficiency of the reaction and offers new perspectives in a synthetic point of view. In this context, we have exploited different strategies basing on Heck/C-H functionalization process, difunctinalization of alkenes reactions through oxidative addition and a sequencial intramolecular aminopalladation/C-H functionalization. These methodologies allow rapid constructions of spiroquinolines, spirooxindoles, 3,3'-disubstituted oxindoles, tetracyclic oxindoles and pyrrolo[1,2-a]indoles cores
Cuny, Guylaine. "Synthèse de moyens et grands cycles fusionnés à des dihydroazaphenanthrènes et synthèse de 1,4-benzodiazépine-2,5-diones par N-arylations intramoléculaires catalysées au palladium ou au cuivre : nouvelle synthèse de 5-aminooxazoles trisubstitués". Paris 11, 2004. http://www.theses.fr/2004PA112232.
Pełny tekst źródłaIn the first part of this manuscript we described dihydrozaphenanthrene fused macrocyclic ring synthesis using a unique domino sequence n-arylation/c-h activation/ c-c bond forming process. This sequence is catalyzed by palladium and is the unique way to rapidly acces to macrocyclic ring via n-arylation with good to excellent yield. During this study, we demonstrated that our substrate acted as ligand for the palladium and favorised the cyclisation. We also determined bond formation order and proved that c-n bond formation preceded c-c bond formation. And we have been able to isolate an intermediate palladium complex, which allowed us to propose a possible mechanism for this transformation. This methodology was successfully applied to 5,6-dihydro-8h-5,7a-diaza-cyclohepta[jk]phenanthrene-4,7-dione synthesis. Then, we demonstrated that copper could be a good catalyst to promote intramolecular n-arylation to produce 1,4-benzodiazepine-2,5-dione. In a second part, we described a new way to synthetize 5-aminooxazole using a passerini modified two component reaction between an aldehyde and an isocyanoacetamide. Those reactions could have been diastereoselectively controlled and applied to rapid synthesis of dipeptide containing norstatine motif
Pradal, Alexandre. "Réactions de cycloisomérisation d'ènynes en présence de complexes d'or, de platine et d'ions halogéniums - Approche combinatoire en présence de complexes de platine. Réactions d'acyloxylation par activation C-H d'aromatiques en présence de complexes d'or". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://pastel.archives-ouvertes.fr/pastel-00832094.
Pełny tekst źródłaFilipczyk, Grzegorz Paweł. "Ferrocenyl-Alkynes and Butadiynes: Reaction Behavior towards Cobalt and Iron Carbonyl Compounds". Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-231913.
Pełny tekst źródłaThe present PhD study focuses on the synthesis and characterization of novel perferrocenylated cyclic complexes utilizing cobalt - mediated cyclomerization in combination with C–H bond activation as well as formation of ferrocenylated phosphino-alkyne compounds with iron and cobalt carbonyls. Electrochemical properties and electron-transfer processes between terminal ferrocenyl units in the diverse cyclic compounds are explored in relation to the chemical composition of the building blocks connecting them. Eleven perferrocenylated cyclic compounds were obtained via [2 + 2] and [2 + 2 + 2] cyclomerization of 1,4-diferrocenylbutadiyne FcC≡C–C≡CFc (Fc = Fe(η5-C5H4)(η5-C5H5)) by the reaction with dicarbonylcyclopentadienylcobalt Co(η5-C5H5)(CO)2. They are subdivided into three groups: (i) products of cyclodimerization with additional chain extension, possessing cyclobutadienyl moieties as a central linkage unit (3a,b and 4a,b), (ii) products of cyclodimerization with consecutive CO insertion (6a,b,c and 7), and (iii) products of cyclotrimerization followed by cycle formation via C–H bond activation (5a,b,c). Optimization of the reaction conditions was made in order to maximize the amount of each group of compounds. Furthermore, another part of this research work focuses on diverse reaction patterns of (ferrocenylethynyl)diphenylphosphane with diironnonacarbonyl and dicobaltocta-carbonyl. Six mixed carbonyl and ferrocenyl-functionalized phospinoalkynyl compounds of iron(0) and cobalt(0) were obtained and characterized
Hanchate, Vinayak. "Sulfoximine and Sulfoxonium Ylide Directed C-H Activation and Domino Cyclization: Construction of Heterocyclic and Carbocyclic Rings". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/5074.
Pełny tekst źródłaCSIR, SERB (EMR/2016/006358)
Muralirajan, Krishnamoorthy, i 莫瑞克. "Rhodium and Ruthenium-Catalyzed C−H Bond Activation and Cyclization Reactions". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/16156868710346313040.
Pełny tekst źródła國立清華大學
化學系
101
ABSTRACT Transition-metal-catalyzed direct conversions of unreactive, less polar CH bonds into numerous organic functional groups by uniting commercially available π-components, which brought a revolution recently in synthetic methodologies for the production of pharmaceuticals, natural products and for opening new routes to organic reactions. Because it can introduce simple conversions, consumes low catalyst loading, inexpensive, readily available starting materials and environmentally friendly conditions. A large variety of metal catalysts, especially rhodium, palladium and ruthenium catalysts are now useful for the efficient catalytic conversion of CH bonds. The uses of rhodium and ruthenium complexes for CH activation via insertion of unsaturated substrates to generate new CC bonds are considerable interest in organic synthesis. In this regard, this thesis describes seven new reactions that focus on the various directing groups with various alkynes and alkenes by rhodium and ruthenium catalyzed CH activations. The CH functionalization reaction affords various functionalized heterocyclic compounds and yields out new five membered and six membered rings. On the other hand carbocyclization, annulation, and insertion reactions of ketone, aldehyde, azo, hydrazine hydrochloride and pyridine containing arenes with simple alkynes and alkenes afforded biologically active indenols, isocoumarins, cinnolinium salts, indoles and amide derivatives in one-pot manner. For better perceptive, I divided this thesis into six chapters. The first four chapters describe about rhodium(III)-catalyzed CH bond activation of aryl ketones, aryl aldehydes, azobenzenes, and aryl hydrazine hydrochlorides with internal alkynes. The fifth chapter describes about rhodium(III)-catalyzed ortho alkenation and cyclization of azobenzenes with alkenes. The final chapter deals with ruthenium-catalyzed amidation of 2-arylpyrindes with isocyanates by CH activation. Chapter 1 describes a regioselective synthesis of indenols by rhodium-catalyzed CH activation and carbocyclization of aryl ketones and alkynes. The catalytic system proceeds via CH activation followed by regioselective insertion of alkynes to give biologically useful, substituted indenols in excellent yields. Chapter 2 deals about a synthesis of highly substituted isocoumarin derivatives from aryl aldehydes and alkynes via C−H activation as a result of rhodium catalyst. This methodology shows in-situ oxidation of aldehydes affords acid and ortho CH activation. This simple method offers an alternative and less expensive way to the synthesis of isocoumarins. Chapter 3 illustrates the rhodium (III)-catalyzed synthesis of cinnolinium salts starting with azobenzenes and alkynes: application to the synthesis of indoles and cinnolines. The reaction path way appears to be the first example employing rhodium catalyzed CH activation and annulation to the synthesis of cinnolinium salts. In addition, the cinnolinium salt products have been successfully applied to the synthesis of three important classes of bioactive compounds and advanced materials namely indole, indoloindole and cinnoline derivatives. Chapter 4 elaborates an efficient regioselective synthesis of indoles from aryl hydrazine hydrochlorides and alkynes via CH activation. This reaction proceeds through the hydrazone group directed selective ortho CH bond activation and insertion of NN bond gave indoles in highly regioselective manner. Chapter 5 reveals a new insertion and aromatization of azobenzenes with alkenes via RhCp*-catalyzed CH activation. The present rhodium catalyzed CH activation reaction is successfully applied to various acrylates and acrylamides to synthesize aminoindole-2-carboxylates and 2-carboxyindoles. Chapter 6 shows a Ru(II)-catalyzed amidation of 2-arylpyridines with isocyanates via CH activation. This method provides an opportunity for the synthesis of various amidated 2-arylpyridines using less expensive ruthenium catalyst under mild reaction condition.
Haridharan i 哈里. "Cobalt-Catalyzed Addition and Rhodium-Catalyzed C−H Bond Activation and Cyclization Reactions". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/43922512681769549479.
Pełny tekst źródła國立清華大學
化學系
102
芳基 - 芳基鍵的形成,是現代有機合成領域中最重要的工具之一。這些鍵結結構經常在天然物中發現,如生物鹼,以及在醫藥和農業化學品方面。特別是碳-氫鍵活化反應的方法來合成具有生物活性化合物,存在著高度位置選擇性與立體選擇性。在這方面,本文的描述著眼於芳基硼酸與苯氧乙腈、2-(2-甲酰基苯氧基)乙腈之加成反應,成功地以鈷金屬錯合物催化此類型反應。經由 碘苯、N-三甲基乙酰基苯胺、苯硼酸與酮肟、芳族羧酸的碳-氫鍵官能化反應,得到各種官能化之聯芳基。關於酮肟與苯硼酸在多步碳-氫鍵活化之一鍋化反應,得到具有生物活性的菲啶衍生物。為了清楚地說明,將論文分為四個章節。第一章描述關於苯氧乙腈與2 -(2-甲酰基苯氧基)乙腈和有機硼酸的鈷催化加成反應。接下來的三個章節介紹有關碳-氫鍵活化反應之酰苯胺類、酮肟與芳香族氨基酸、有機硼酸和碘苯的銠金屬錯合物催化環化反應。 第1章介紹鈷金屬錯合物催化芳基硼酸與苯氧乙腈,合成具有生物活性之高產率芳基酮化合物。 第2章介紹有關第一個以銠金屬錯合物催化N-三甲基乙酰基苯胺與碘苯之鄰位芳基化反應。 第3章說明銠金屬錯合物催化一鍋化碳-氫鍵官能化反應,酮肟與芳基硼酸之偶聯反應以合成菲啶衍生物。 第4章介紹銠金屬錯合物催化芳香酸與芳基硼酸之碳-氫鍵偶合反應。
Prakash, Sekar, i 帕卡許. "Rhodium-Catalyzed Alkenylation and Cobalt-Catalyzed Oxidative Cyclization Reactions via C–H Bond Activation". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/58qm33.
Pełny tekst źródłaCzęści książek na temat "C-H Activation and Domino Cyclization"
Tsui, Gavin Chit, i Mark Lautens. "C-H Activation Reactions in Domino Processes". W Domino Reactions, 67–104. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671304.ch3.
Pełny tekst źródłaJautze, S., i R. Peters. "Domino Reactions". W Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00291.
Pełny tekst źródłaWatson, I. D. G., i F. D. Toste. "Intramolecular Cyclization Initiated by C—H Activation". W Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00175.
Pełny tekst źródłaGouverneur, V., i O. Lozano. "Prins Cyclization To Access Fluorinated Tetrahydropyrans, Tetrahydrothiopyrans, and Piperidines". W Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00573.
Pełny tekst źródłaGaspar, B., i D. Trauner. "Synthesis of Five-Membered Rings through Electrocyclization of Pentadienyl Cations: The Nazarov Cyclization". W Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00235.
Pełny tekst źródłaTaber, Douglass F. "Functionalization and Homologation of C-H Bonds". W Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0020.
Pełny tekst źródłaTaber, Douglass F. "Natural Product Synthesis by C–H Functionalization: (±)-Allokainic Acid (Wee), (–)-Cameroonan-7α-ol (Taber), (+)-Lithospermic Acid (Yu), (–)-Manabacanine (Kroutil), Streptorubin B, and Metacycloprodigiosin (Challis)". W Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0022.
Pełny tekst źródłaTaber, Douglass F. "Stereoselective C–O Ring Construction: The Keck Synthesis of Bryostatin I". W Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0046.
Pełny tekst źródłaTaber, Douglass. "Stereoselective C-O Ring Construction: The Oguri-Oikawa Synthesis of Lasalocid A". W Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.003.0047.
Pełny tekst źródłaTaber, Douglass F. "Heteroaromatic Construction: The Li Synthesis of Mycoleptodiscin A". W Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0068.
Pełny tekst źródłaStreszczenia konferencji na temat "C-H Activation and Domino Cyclization"
Solorio Alvarado, Dr César, i Narendra Mali. "<em>Synthesis Of polyaromatic heterocycles pyrrolo [1,2-a] indoles by Gold(I)-Catalyzed tandem Cyclization/C-H Activation/Cyclization.</em>". W The 24th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecsoc-24-08378.
Pełny tekst źródła