Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: C-C bonds.

Artykuły w czasopismach na temat „C-C bonds”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „C-C bonds”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

RITTER, STEPHEN K. "EXTREME C–C BONDS". Chemical & Engineering News 87, nr 19 (11.05.2009): 32–33. http://dx.doi.org/10.1021/cen-v087n019.p032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Huntley, Deborah R., Georgios Markopoulos, Patrick M. Donovan, Lawrence T. Scott i Roald Hoffmann. "Squeezing CC Bonds". Angewandte Chemie 117, nr 46 (25.11.2005): 7721–25. http://dx.doi.org/10.1002/ange.200502721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Huntley, Deborah R., Georgios Markopoulos, Patrick M. Donovan, Lawrence T. Scott i Roald Hoffmann. "Squeezing CC Bonds". Angewandte Chemie International Edition 44, nr 46 (25.11.2005): 7549–53. http://dx.doi.org/10.1002/anie.200502721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zeng, Xiaoming, i Xuefeng Cong. "Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds". Synlett 32, nr 13 (11.05.2021): 1343–53. http://dx.doi.org/10.1055/a-1507-4153.

Pełny tekst źródła
Streszczenie:
AbstractTransition-metal-catalyzed cross-coupling has emerged as one of the most powerful and useful tools for the formation of C–C and C–heteroatom bonds. Given the shortage of resources of precious metals on Earth, the use of Earth-abundant metals as catalysts in developing cost-effective strategies for cross-coupling is a current trend in synthetic chemistry. Compared with the achievements made using first-row nickel, iron, cobalt, and even manganese catalysts, the group 6 metal chromium has rarely been used to promote cross-coupling. This perspective covers recent advances in chromium-catalyzed cross-coupling reactions in transformations of chemically inert C(aryl)–O, C(aryl)–N, and C(aryl)–H bonds, offering selective strategies for molecule construction. The ability of low-valent Cr with a high-spin state to participate in two-electron oxidative addition is highlighted; this is different from the mechanism involving single-electron transfer that is usually assigned to chromium-mediated transformations.1 Introduction2 Chromium-Catalyzed Kumada Coupling of Nonactivated C(aryl)–O and C(aryl)–N Bonds3 Chromium-Catalyzed Reductive Cross-Coupling of Two Nonactivated C(aryl)–Heteroatom Bonds4 Chromium-Catalyzed Functionalization of Nonactivated C(aryl)–H Bonds5 Conclusions and Outlook
Style APA, Harvard, Vancouver, ISO itp.
5

Egami, Hiromichi. "Fluorofunctionalizations of C–C Multiple Bonds and C–H Bonds". Chemical and Pharmaceutical Bulletin 68, nr 6 (1.06.2020): 491–511. http://dx.doi.org/10.1248/cpb.c19-00856.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Meng, Ge, Pengfei Li, Kai Chen i Linghua Wang. "Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation". Synthesis 49, nr 21 (26.09.2017): 4719–30. http://dx.doi.org/10.1055/s-0036-1590913.

Pełny tekst źródła
Streszczenie:
Arylboronic acids and their derivatives are widely used in organic synthesis. Conventional methods for their preparation require either reactive organometallic reagents or transition-metal-mediated processes. In recent years, transition-metal-free reactions for aryl C–B bond formation that obviate preformed organometallic reagents have gained interest and have developed rapidly. These new reactions have shown significant advantages for the preparation of functionalized molecules. In this review, an overview of the recent advances in transition-metal-free aromatic borylation reactions is provided.1 Introduction2 Transition-Metal-Free Transformations of CAr–N Bonds to CAr–B Bonds3 Transition-Metal-Free Transformations of CAr–X Bonds to CAr–B Bonds4 Transition-Metal-Free Transformations of CAr–H Bonds to CAr–B Bonds5 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
7

Luh, Tien-Yau. "Chelation Assisted Conversion of C-S Bonds into C-C Bonds". Phosphorus, Sulfur, and Silicon and the Related Elements 120, nr 1 (1.01.1997): 259–73. http://dx.doi.org/10.1080/10426509708545523.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hamel, Jean-Denys, i Jean-François Paquin. "Activation of C–F bonds α to C–C multiple bonds". Chemical Communications 54, nr 73 (2018): 10224–39. http://dx.doi.org/10.1039/c8cc05108a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kaupp, Gerd, i Jürgen Boy. "Overlong CC Single Bonds". Angewandte Chemie International Edition in English 36, nr 12 (3.02.1997): 48–49. http://dx.doi.org/10.1002/anie.199700481.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wang, Chang-Sheng, Pierre H. Dixneuf i Jean-François Soulé. "Photoredox Catalysis for Building C–C Bonds from C(sp2)–H Bonds". Chemical Reviews 118, nr 16 (16.07.2018): 7532–85. http://dx.doi.org/10.1021/acs.chemrev.8b00077.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

LUH, T. Y. "ChemInform Abstract: Chelation-Assisted Conversion of C-S Bonds into C-C Bonds". ChemInform 29, nr 4 (24.06.2010): no. http://dx.doi.org/10.1002/chin.199804268.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Jia, C. "Efficient Activation of Aromatic C-H Bonds for Addition to C-C Multiple Bonds". Science 287, nr 5460 (17.03.2000): 1992–95. http://dx.doi.org/10.1126/science.287.5460.1992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Del Bene, Janet E., Ibon Alkorta i José Elguero. "Carbenes as Electron-Pair Donors To CO2 for C···C Tetrel Bonds and C–C Covalent Bonds". Journal of Physical Chemistry A 121, nr 20 (16.05.2017): 4039–47. http://dx.doi.org/10.1021/acs.jpca.7b03405.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Yeston, Jake. "Slicing through both C-C and C-H bonds". Science 357, nr 6353 (24.08.2017): 768.17–770. http://dx.doi.org/10.1126/science.357.6353.768-q.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Mori, A., M. Takahashi, K. Masui, H. Sekiguchi, N. Kobayashi, M. Funahashi i N. Tamaoki. "Activating C-H Bonds Over C-Br Bonds to Make Oligothiophenes". Synfacts 2006, nr 11 (listopad 2006): 1115. http://dx.doi.org/10.1055/s-2006-949468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Nziko, Vincent de Paul N., i Steve Scheiner. "S···π Chalcogen Bonds between SF2or SF4and C–C Multiple Bonds". Journal of Physical Chemistry A 119, nr 22 (22.05.2015): 5889–97. http://dx.doi.org/10.1021/acs.jpca.5b03359.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

A. Adrio, Luis, i King Kuok (Mimi) Hii. "Palladium-Catalyzed Heterofunctionalization of C-H, C=C and C≡ C Bonds". Current Organic Chemistry 15, nr 18 (1.09.2011): 3337–61. http://dx.doi.org/10.2174/138527211797248003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Allen, Gregory W., Robert S. Armstrong, Manuel J. Aroney, Raymond K. Pierens i Alan J. Williams. "Polarisability anisotropies of C—H, C—C, C—Cl and C—Br bonds". J. Chem. Soc., Faraday Trans. 2 84, nr 11 (1988): 1775–78. http://dx.doi.org/10.1039/f29888401775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Fukumoto, Yoshiya. "Catalytic Hydroamination of C-C Multiple Bonds". Journal of Synthetic Organic Chemistry, Japan 67, nr 7 (2009): 735–50. http://dx.doi.org/10.5059/yukigoseikyokaishi.67.735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

RITTER, STEPHEN K. "WIDENING THE ROAD FOR C-C BONDS". Chemical & Engineering News 80, nr 5 (4.02.2002): 26. http://dx.doi.org/10.1021/cen-v080n005.p026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Martínez-Guajardo, Gerardo, Kelling J. Donald, Bernard K. Wittmaack, Miguel Angel Vazquez i Gabriel Merino. "Shorter Still: Compressing C−C Single Bonds". Organic Letters 12, nr 18 (17.09.2010): 4058–61. http://dx.doi.org/10.1021/ol101671m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Martínez-Guajardo, Gerardo, Kelling J. Donald, Bernard K. Wittmaack, Miguel Angel Vazquez i Gabriel Merino. "Shorter Still: Compressing C−C Single Bonds". Organic Letters 13, nr 1 (7.01.2011): 172. http://dx.doi.org/10.1021/ol102654b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Suzuki, Takanori, Takashi Takeda, Hidetoshi Kawai i Kenshu Fujiwara. "Ultralong C-C bonds in hexaphenylethane derivatives". Pure and Applied Chemistry 80, nr 3 (1.01.2008): 547–53. http://dx.doi.org/10.1351/pac200880030547.

Pełny tekst źródła
Streszczenie:
The longer C-C bond than the standard (1.54 Å) is so weakened that it is cleaved easily, as found in the parent hexaphenylethane (HPE). However, the compounds with an ultralong C-C bond (1.75 Å) can be isolated as stable solids when the bond-dissociated species does not undergo any reactions other than bond reformation. This is the central point in designing the highly strained HPEs, which were obtained by two-electron reduction of the corresponding dications. Steric repulsion of "front strain" is the major factor to expand the central C-C bond of HPEs. During the detailed examination of the ultralong C-C bond, the authors discovered the intriguing phenomenon of "expandability": the C-C bond length can be altered over a wide range by applying only a small amount of energy (1 kcal mol-1) supplied by crystal packing force. This observation indicates that the much longer C-C bond than the shortest nonbonded contact (1.80 Å) will be realized under the rational molecular design concept.
Style APA, Harvard, Vancouver, ISO itp.
24

KAUPP, G., i J. BOY. "ChemInform Abstract: Overlong C-C Single Bonds". ChemInform 28, nr 16 (4.08.2010): no. http://dx.doi.org/10.1002/chin.199716288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

del Río, M. Pilar, José A. López, Miguel A. Ciriano i Cristina Tejel. "Connecting CC Bonds to Tetrairidium Chains". Chemistry - A European Journal 19, nr 15 (28.02.2013): 4707–11. http://dx.doi.org/10.1002/chem.201203769.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Madasu, Jayashree, Shital Shinde, Rudradip Das, Sagarkumar Patel i Amit Shard. "Potassium tert-butoxide mediated C–C, C–N, C–O and C–S bond forming reactions". Organic & Biomolecular Chemistry 18, nr 41 (2020): 8346–65. http://dx.doi.org/10.1039/d0ob01382j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wang, Min, Xiang-Kui Gu, Hai-Yan Su, Jian-Min Lu, Ji-Ping Ma, Miao Yu, Zhe Zhang i Feng Wang. "Preferential cleavage of C C bonds over C N bonds at interfacial CuO Cu2O sites". Journal of Catalysis 330 (październik 2015): 458–64. http://dx.doi.org/10.1016/j.jcat.2015.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Wang, Congyang, i Ting Liu. "Manganese-Catalyzed C(sp2)–H Addition to Polar Unsaturated Bonds". Synlett 32, nr 13 (27.03.2021): 1323–29. http://dx.doi.org/10.1055/a-1468-6136.

Pełny tekst źródła
Streszczenie:
AbstractTransition-metal-catalyzed nucleophilic C–H addition of hydrocarbons to polar unsaturated bonds could intrinsically avoid prefunctionalization of substrates and formation of waste byproducts, thus featuring high step- and atom-economy. As the third most abundant transition metal, manganese-catalyzed C–H addition to polar unsaturated bonds remains challenging, partially due to the difficulty in building a closed catalytic cycle of manganese. In the past few years, we have developed manganese catalysis to enable the sp2-hydrid C–H addition to polar unsaturated bonds (e.g., imines, aldehydes, nitriles), which will be discussed in this personal account.1 Introduction2 Mn-Catalyzed N-Directed C(sp2)–H Addition to Polar Unsaturated Bonds3 Mn-Catalyzed O-Directed C(sp2)–H Addition to Polar Unsaturated Bonds4 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
29

Rowland, Alex T. "C-H and C-D Bonds: An Experimental Approach to the Identity of C-H Bonds by Their Conversion to C-D Bonds". Journal of Chemical Education 80, nr 3 (marzec 2003): 311. http://dx.doi.org/10.1021/ed080p311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Chumakova, Natalia A., i Anatoly L. Buchachenko. "Spin propagation through the C–C and C–H bonds". Mendeleev Communications 25, nr 4 (lipiec 2015): 264–66. http://dx.doi.org/10.1016/j.mencom.2015.07.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

PETKEWICH, RACHEL. "BREAKING C–F BONDS". Chemical & Engineering News 86, nr 35 (wrzesień 2008): 13. http://dx.doi.org/10.1021/cen-v086n035.p013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Chong, Eugene, i Suzanne A. Blum. "Aminoboration: Addition of B–N σ Bonds across C–C π Bonds". Journal of the American Chemical Society 137, nr 32 (10.08.2015): 10144–47. http://dx.doi.org/10.1021/jacs.5b06678.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Yang, Jia, Jing Xiao, Tieqiao Chen, Shuang-Feng Yin i Li-Biao Han. "Efficient nickel-catalyzed phosphinylation of C–S bonds forming C–P bonds". Chemical Communications 52, nr 82 (2016): 12233–36. http://dx.doi.org/10.1039/c6cc06048j.

Pełny tekst źródła
Streszczenie:
The first nickel-catalyzed phosphinylation of C–S bonds forming C–P bonds is developed. The reaction can proceed readily with the simple Ni(cod)2 at a loading down to 0.1 mol% at the 10 mmol scale. Various aryl sulfur compounds, i.e. sulfides, sulfoxides and sulfones all couple with P(O)–H compounds to produce the corresponding organophosphorus compounds, which provides an efficient new method for the construction of C–P bonds.
Style APA, Harvard, Vancouver, ISO itp.
34

Chen, Zhen, Meng-Yu Rong, Jing Nie, Xue-Feng Zhu, Bing-Feng Shi i Jun-An Ma. "Catalytic alkylation of unactivated C(sp3)–H bonds for C(sp3)–C(sp3) bond formation". Chemical Society Reviews 48, nr 18 (2019): 4921–42. http://dx.doi.org/10.1039/c9cs00086k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Mi, Zhiyuan, Jiahao Tang, Zhipeng Guan, Wei Shi i Hao Chen. "Cleavage of C-C and C-O Bonds to Form C-C Bonds: Direct Cross-Coupling between Acetylenic Alcohols and Benzylic Carbonates". European Journal of Organic Chemistry 2018, nr 32 (17.08.2018): 4479–82. http://dx.doi.org/10.1002/ejoc.201800861.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Zhang, Honglin, Changduo Pan, Ning Jin, Zhangxi Gu, Hongwen Hu i Chengjian Zhu. "Metal-free cascade construction of C–C bonds by activation of inert C(sp3)–H bonds". Chemical Communications 51, nr 7 (2015): 1320–22. http://dx.doi.org/10.1039/c4cc08629e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Terao, Jun, Misaki Nakamura i Nobuaki Kambe. "Non-catalytic conversion of C–F bonds of benzotrifluorides to C–C bonds using organoaluminium reagents". Chemical Communications, nr 40 (2009): 6011. http://dx.doi.org/10.1039/b915620h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Jia, C., D. Piao, J. Oyamada, W. Lu, T. Kitamura i Y. Fujiwara. "ChemInform Abstract: Efficient Activation of Aromatic C-H Bonds for Addition to C-C Multiple Bonds". ChemInform 31, nr 48 (28.11.2000): no. http://dx.doi.org/10.1002/chin.200048266.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zhao, Yating, i Wujiong Xia. "Photochemical C–H bond coupling for (hetero)aryl C(sp2)–C(sp3) bond construction". Organic & Biomolecular Chemistry 17, nr 20 (2019): 4951–63. http://dx.doi.org/10.1039/c9ob00244h.

Pełny tekst źródła
Streszczenie:
This review highlights the recent advances in photochemical (hetero)aryl C(sp2)–C(sp3) bond construction via C–H bond coupling such as (hetero)arylation of C(sp3)–H bonds and alkylation of (hetero)aryl C(sp2)–H bonds.
Style APA, Harvard, Vancouver, ISO itp.
40

Li, Shuai-Shuai, Liu Qin i Lin Dong. "Rhodium-catalyzed C–C coupling reactions via double C–H activation". Organic & Biomolecular Chemistry 14, nr 20 (2016): 4554–70. http://dx.doi.org/10.1039/c6ob00209a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Borpatra, Paran J., Bhaskar Deka, Mohit L. Deb i Pranjal K. Baruah. "Recent advances in intramolecular C–O/C–N/C–S bond formation via C–H functionalization". Organic Chemistry Frontiers 6, nr 20 (2019): 3445–89. http://dx.doi.org/10.1039/c9qo00863b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Kennemur, Jennifer L., Rajat Maji, Manuel J. Scharf i Benjamin List. "Catalytic Asymmetric Hydroalkoxylation of C–C Multiple Bonds". Chemical Reviews 121, nr 24 (3.12.2021): 14649–81. http://dx.doi.org/10.1021/acs.chemrev.1c00620.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Padilla, Rosa, Verónica Salazar, Margarita Paneque, José G. Alvarado-Rodríguez, Joaquín Tamariz, Héctor Pacheco-Cuvas i Florencia Vattier. "Mild Oxidation of C−C Bonds of Benzoiridacycles". Organometallics 29, nr 12 (28.06.2010): 2835–38. http://dx.doi.org/10.1021/om100196h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Smaligo, Andrew J., i Ohyun Kwon. "Dealkenylative Thiylation of C(sp3)–C(sp2) Bonds". Organic Letters 21, nr 21 (październik 2019): 8592–97. http://dx.doi.org/10.1021/acs.orglett.9b03186.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chan, Antony P. Y., i Alexey G. Sergeev. "Metal-mediated cleavage of unsaturated C-C bonds". Coordination Chemistry Reviews 413 (czerwiec 2020): 213213. http://dx.doi.org/10.1016/j.ccr.2020.213213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Walter, Marc D, i Matthias Tamm. "Breaking News: Tungsten Cleaves Aromatic CC Bonds". Angewandte Chemie International Edition 49, nr 19 (14.04.2010): 3264–66. http://dx.doi.org/10.1002/anie.201001197.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Bernard, Julie, Esta van Heerden, Isabel W. C. E. Arends, Diederik J. Opperman i Frank Hollmann. "Chemoenzymatic Reduction of Conjugated CC Double Bonds". ChemCatChem 4, nr 2 (6.12.2011): 196–99. http://dx.doi.org/10.1002/cctc.201100312.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Widenhoefer, Ross A., i Xiaoqing Han. "Gold-Catalyzed Hydroamination of C–C Multiple Bonds". European Journal of Organic Chemistry 2006, nr 20 (październik 2006): 4555–63. http://dx.doi.org/10.1002/ejoc.200600399.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Tombo, Gerardo M Ramos, i Camille Ganter. "Nucleophilic Addition to CC Bonds, Part X". Helvetica Chimica Acta 85, nr 10 (październik 2002): 3575–87. http://dx.doi.org/10.1002/1522-2675(200210)85:10<3575::aid-hlca3575>3.0.co;2-q.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Rybtchinski, Boris, i David Milstein. "Metal Insertion into C−C Bonds in Solution". Angewandte Chemie International Edition 38, nr 7 (1.04.1999): 870–83. http://dx.doi.org/10.1002/(sici)1521-3773(19990401)38:7<870::aid-anie870>3.0.co;2-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii