Gotowa bibliografia na temat „C-C bonds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „C-C bonds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "C-C bonds"
RITTER, STEPHEN K. "EXTREME C–C BONDS". Chemical & Engineering News 87, nr 19 (11.05.2009): 32–33. http://dx.doi.org/10.1021/cen-v087n019.p032.
Pełny tekst źródłaHuntley, Deborah R., Georgios Markopoulos, Patrick M. Donovan, Lawrence T. Scott i Roald Hoffmann. "Squeezing CC Bonds". Angewandte Chemie 117, nr 46 (25.11.2005): 7721–25. http://dx.doi.org/10.1002/ange.200502721.
Pełny tekst źródłaHuntley, Deborah R., Georgios Markopoulos, Patrick M. Donovan, Lawrence T. Scott i Roald Hoffmann. "Squeezing CC Bonds". Angewandte Chemie International Edition 44, nr 46 (25.11.2005): 7549–53. http://dx.doi.org/10.1002/anie.200502721.
Pełny tekst źródłaZeng, Xiaoming, i Xuefeng Cong. "Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds". Synlett 32, nr 13 (11.05.2021): 1343–53. http://dx.doi.org/10.1055/a-1507-4153.
Pełny tekst źródłaEgami, Hiromichi. "Fluorofunctionalizations of C–C Multiple Bonds and C–H Bonds". Chemical and Pharmaceutical Bulletin 68, nr 6 (1.06.2020): 491–511. http://dx.doi.org/10.1248/cpb.c19-00856.
Pełny tekst źródłaMeng, Ge, Pengfei Li, Kai Chen i Linghua Wang. "Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation". Synthesis 49, nr 21 (26.09.2017): 4719–30. http://dx.doi.org/10.1055/s-0036-1590913.
Pełny tekst źródłaLuh, Tien-Yau. "Chelation Assisted Conversion of C-S Bonds into C-C Bonds". Phosphorus, Sulfur, and Silicon and the Related Elements 120, nr 1 (1.01.1997): 259–73. http://dx.doi.org/10.1080/10426509708545523.
Pełny tekst źródłaHamel, Jean-Denys, i Jean-François Paquin. "Activation of C–F bonds α to C–C multiple bonds". Chemical Communications 54, nr 73 (2018): 10224–39. http://dx.doi.org/10.1039/c8cc05108a.
Pełny tekst źródłaKaupp, Gerd, i Jürgen Boy. "Overlong CC Single Bonds". Angewandte Chemie International Edition in English 36, nr 12 (3.02.1997): 48–49. http://dx.doi.org/10.1002/anie.199700481.
Pełny tekst źródłaWang, Chang-Sheng, Pierre H. Dixneuf i Jean-François Soulé. "Photoredox Catalysis for Building C–C Bonds from C(sp2)–H Bonds". Chemical Reviews 118, nr 16 (16.07.2018): 7532–85. http://dx.doi.org/10.1021/acs.chemrev.8b00077.
Pełny tekst źródłaRozprawy doktorskie na temat "C-C bonds"
Correia, Camille. "Oxidative C-C bond formation via metal-catalyzed coupling of two C-H bonds". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114441.
Pełny tekst źródłaCette thèse décrit la formation de nouvelles liaisons C-C par activation oxydative directe de deux liaisons C-H grâce à l'utilisation de métaux de transition comme catalyseurs. La première partie présentera trois différentes réactions de Cross-Dehydrogenative-Coupling (CDC) oxydantes. Dans un premier temps, sera présentée dans le chapitre 2, la réaction d'alkylation de liens C-H benzylique par 1,3-dicarbonyles et cétones. Ce system a démontré son efficacité sur une large variété de substrats contenant des liaisons C-H enolysable. De plus il a été rendu possible, grâce à l'utilisation d'un co-catalyseur organique, le N-Hydroxyphthalimide (NHPI), d'utiliser l'oxygène moléculaire comme oxydant terminal. Dans un second temps, nous étudierons l'utilisation du 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) comme médiateur pour l'alkynylation de liaisons sp3 C-H. Une nouvelle CDC réaction catalysée par le triflate de cuivre (I) sera présentée dans le chapitre 3, entre un alcyne et une liaison C-H benzylique. Le chapitre 4 présentera le développement de cette réaction à l'alcynation d'éthers benzyliques en présence d'une quantité catalytique de triflate d'argent (I). Ces deux procédures sont seulement applicables pour les alcynes vrais aromatiques. Finalement, le chapitre 6 portera sur la réaction de Minisci catalysée par le palladium. Le peroxyde radical α-hydroxyalkyl généré lors de la réaction est capable de réagir avec les azines. La quantité stœchiométrique d'acide nécessaire lors de la traditionnelle réaction de Minisci, a été remplacée par une quantité catalytique de dichloro palladium.
Rix, Kathryn. "Electrochemical reduction of amides and c=c bonds". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/39846.
Pełny tekst źródłaKanuru, Vijaykumar. "Understanding surface mediated C-C and C-N bond forming reactions". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608956.
Pełny tekst źródłaBowen, John George. "C-H activation in the formation of C-N and C-O Bonds". Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685335.
Pełny tekst źródłaLee, Kang-sang. "New Concepts and Catalysts for Enantioselective Synthesis of C-C, C-Si, and C-B Bonds". Thesis, Boston College, 2010. http://hdl.handle.net/2345/1739.
Pełny tekst źródłaChapter 1. The development of chiral monodentate N-heterocyclic carbenes (NHCs) is presented. Structurally varied twenty-eight new chiral imidazolinim salts, NHC precursors, were synthesized and characterized. Chapter 2. The first example of Cu-catalyzed enantioselective conjugate additions of alkyl- and arylzinc reagents to unactivated cyclic enones is presented. Transformations are promoted in the presence of 2.5-15 mol % of a readily available chiral NHC-based Cu complex, affording the desired products bearing all-carbon quaternary stereogenic centers in 67-98% yield and in up to 97% ee. Catalytic enantioselective reactions can be carried out on a benchtop, with undistilled solvent and commercially available (not further purified) Cu salts. Chapter 3. A new class of enantioselective conjugate addition (ECA) reactions that involve aryl- or alkenylsilylfluoride reagents and are catalyzed by chiral non-C2-symmetric Cu-based NHC complexes are presented. Transformations have been designed based on the principle that a catalytically active chiral NHC-Cu-aryl or NHC-Cu-alkenyl complex can be accessed from reaction of a Cu-halide precursor with in situ-generated aryl- or alkenyl-tetrafluorosilicate. Reactions proceed in the presence of 1.5 equivalents of the aryl- or alkenylsilane reagents and 1.5 equivalents of tris(dimethylamino)sulfonium difluorotrimethylsilicate. Desired products are isolated in 63-97% yield and 73.5:26.5-98.5:1.5 enantiomeric ratio (47%-97% ee). Chapter 4. An efficient Cu-catalyzed protocol for enantioselective addition of a dimethylphenylsilanyl group to a wide range of cyclic and acyclic unsaturated ketones, esters, acrylonitriles and dienones is presented. Reactions are performed in the presence of 1-5 mol % of commercially available and inexpensive CuCl, a readily accessible monodentate imidazolinium salt as well as commercially available (dimethylphenylsilyl)pinacolatoboron. Cu-catalyzed 1,4- and 1,6-conjugate additions afford the enantiomerically enriched silanes in 72%-98% yield and 90:10->99:1 enantiomeric ratio (er) with up to >25:1 of Z:E selectivity. Chapter 5. A Cu-catalyzed method for enantioselective boronate conjugate additions to trisubstituted alkenes of acyclic a,b-unsaturated carboxylic esters, ketones, and thioesters is presented. All transformations are promoted by 5 mol % of a chiral monodentate NHC-Cu complex, derived from a readily available C1-symmetric imidazolinium salt, and in the presence of commercially available bis(pinacolato)diboron. Reactions are efficient (typically, 60% to >98% yield after purification) and deliver the desired boryl carbonyls in up to >98:2 enantiomer ratio (er). In addition, metal-free, nucleophilic activation of a B-B bond has been exploited in the development of a highly efficient method for conjugate additions of commercially available bis(pinacolato)diboron to cyclic or acyclic a,b-unsaturated carbonyls. Reactions are readily catalyzed by 2.5-10 mol % of a simple NHC. A variety of cyclic and acyclic unsaturated ketones and esters can serve as substrates. Transformations deliver boryl carbonyls bearing tertiary as well as quaternary B-substituted carbons in up to >98% yield
Thesis (PhD) — Boston College, 2010
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Owen, Gareth Richard. "Palladium-mediated transformationand activation of unsaturated C-N, C-S and C-O bonds". Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408281.
Pełny tekst źródłaJiang, Tuo. "Palladium(II)-Catalyzed Oxidative Carbocyclization : Stereoselective Formation of C–C and C–B Bonds". Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-108669.
Pełny tekst źródłaAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.
Ziadi, Asraa. "Metal-catalyzed functionalization of c-c bonds in four-membered rings". Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/320185.
Pełny tekst źródłaRecientemente la funcionalización catalítica de enlaces C-C ha suscitado un gran interés en la comunidad científica a pesar de los retos que conlleva. Esta tesis doctoral se ha basado en diseñar nuevos procesos catalíticos para la funcionalización de enlaces C-C en anillos de cuatro miembros. Específicamente, se ha demostrado la viabilidad de preparar cetonas con grupos arilo en posición γ usando precatalizadores de Pd para promover la rotura de enlaces C-C en anillos de tert-ciclobutanol utilizando cloruros de arilo y tosilatos como agentes arilantes (Capítulo 2). La transformación se caracteriza por su amplia generalidad y baja carga de catalizador. La selectividad de la reacción puede ser fácilmente controlada por la naturaleza del ligando, en la que fosfinas con grupos ricos en electrones y voluminosos dan los mejores resultados, evitando la β-eliminación de hidrógeno de las especies organometálicas intermedias. Considerando los precedentes del Capítulo 2, se ha extendido esta metodología al acoplamiento con haloacetilenos para preparar cetonas con grupos alquino en posición γ (Capítulo 3). Curiosamente, los substituyentes del grupo alquino juegan un papel fundamental en la reactividad, pudiéndose controlar mediante la utilización de un cierto ligando. En el Capítulo 4, se ha desarrollado una nueva transformación basada en una reacción catalizada por compuestos de Ni para efectuar la síntesis de anillos de ocho eslabones mediante una reacción formal de cicloadición [4+4] de benzociclobutanonas y dienos simples. Curiosamente, dicho método muestra una especial preferencia para formar anillos de ocho eslabones sobre los, a priori, anillos de 6 eslabones que son más estables termodinámicamente. En la presente tesis doctoral se ha estudiado también la viabilidad de llevar a cabo una fijación catalítica de CO2 y la formación de enlaces C-F mediante una rotura de enlaces C-C (Capítulo 5) aunque no se han encontrado las condiciones óptimas para llevar a cabo tales transformaciones.
The means to promote catalytic C-C bond-functionalization has gained a considerable attention in recent years and probably can be considered one of the most challenging and vibrant subjects in organometallic chemistry. This PhD thesis deals with the design of new metal-catalyzed functionalization of C-C bonds in four-membered ring frameworks. Specifically, we have demonstrated the viability of preparing γ-arylated ketones via Pd-catalyzed cleavage of C-C bonds in tert-cyclobutanol using aryl chloride or tosylate counterparts (Chapter 2). The transformation possesses a wide substrate scope and remarkable low catalyst loadings. Selectivity was controlled by the ligand in which electron-rich and sterically-hindered phosphine ligands provided a unique reaction outcome that avoided the proclivity of alkyl metal species towards destructive β−hydride elimination. Prompted by the precedents in Chapter 2, we successfully extended the scope of the metal-catalyzed C-C bond-cleavage of tert-cyclobutanols by using halo acetylene counterparts giving γ-alkynylated ketones (Chapter 3). Interestingly, substituents on the alkyne motif showed a remarkable influence on reactivity. Of particular interest is the application profile of such methodology since γ-alkynylated ketones could promote consecutive metal-catalyzed transformations into valuable synthetic intermediates. In Chapter 4, we extended the interest for C-C bond-cleavage beyond the use of tert-cycñobutanols. Specifically, we developed a Ni-catalyzed C-C bond-cleavage event in benzocyclobutenones for preparing eight-membered rings via formal [4+4]-cycloaddition with dienes (Chapter 4). The method shows a specific preference for eight-membered rings over thermodynamically more stable six-membered rings. This PhD thesis has also studied the development of catalytic CO2 fixation and C-F bond-formation via C-C bond-cleavage (Chapter 5). While we have not found reaction conditions to effect the desired transformations, our research group is actively involved in related catalytic endeavors and it is expected that such research will shed light into the targeted CO2 fixation or C-F bond-forming reactions via C-C bond-cleavage.
Sau, Roca Míriam. "From Click Chemistry to catalytic cleavage of unstrained C-C bonds". Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/396080.
Pełny tekst źródłaÉsta tesis doctoral está basada principalmente en la síntesis de moléculas pequeñas potencialmente útiles para investigaciones avanzadas. Se han empleado diferentes metodologías para obtenerlas: 1) Cicloadiciones intramoleculares entre un alkino y una azida libres de cobre para la obtención de derivados de benzodiazepinas. Se han obtenido una gran variedad de triazoles fusionados a heterociclos de siete miembros. Posteriormente se han realizado pruebas de actividad biológica de las moléculas resultantes. 2) a) Escisión de enlaces carbono-carbono no activados de amino alcoholes y utilitzación de éstos como nucleófilos conjuntamente con bromuros de arilo para una reacción de acoplamiento catalizada por paladio para la obtención de derivados de dibenzil aminas. Se ha realizado una gran optimización de las condiciones de reacción; base, disolvente, electrófilo, temperatura, catalizador y ligando. b) Escisión de enlaces carbono-carbono no activados de N-alilo amino alcoholes y la utilización de éste como nucleófilo conjuntamente con bromuros de arilo en una reacción de acoplamiento catalizada por paladio para la obtención de aldehídos arilados en posición beta. Se ha realizado la síntesis de un gran numero de amino alcoholes nuevos y éstos se han sometido a las condiciones optimizadas de reacción. Demostrando que ésta transformación es útil para una gran variedad de sustratos (bromuros de arilo y amino alcoholes). La enamina resultante de la reacción de acoplamiento se ha alquilado con vinil metil cetona con buenos rendimientos pero pobres diastereoselectividades aunque se ha demostrado que la reacción es factible. Para finalizar, se ha desarrollado la versión enantioselectiva de la anterior transformación obteniendo buenos excesos enantioméricos aunque con bajos rendimientos.
This PhD thesis is based basically on synthesis of small molecules potentially useful for further investigations. Different strategies have been used to obtain them; 1) Copper free intramolecular cycloadditions between an azide and an akyne for the obtention of benzodiazepine derivatives. A wide range of triazoles fused to seven membered heterocycles rings have been obtained. Later, biological studies have been carried out. 2)a) Carbon-carbon bond cleavage of amino alcohols has been carried out with the subsequent use of them as a nucleophile together with aryl bromides to develop a cross-coupling reaction for the obtention of dibenzyl amines. A wide optimization of the reaction parameters was carried out; base, ligand, catalyst, electrophile, temperatura, and solent. b) Carbon-carbon bond cleavage of N- allyl amino alcohols has been carried out with the subsequent use of them as a nucleophile together with aryl bromides to develop a cross-coupling reaction for the obtention of beta arylated aldehydes. An important number of new amino alcohols have been synthesized and these have been subjected to the optimized reaction conditions. It has been demonstrated that this transformation is useful for a wide range of substrates (amino alcohols and aryl bromides). The resultant enamine has been alkylated with methyl vinyl ketone with good yields but poor diastereoselectivity. To finish the enantioselective version of beta functionalization of aldehydes has been developed obtaining good enantioselectivity but poor yields
Chudasama, V. "The use of aerobic aldehyde C-H activation for the construction of C-C and C-N bonds". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1324525/.
Pełny tekst źródłaKsiążki na temat "C-C bonds"
Li, Chao-Jun, red. From C-H to C-C Bonds. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782620082.
Pełny tekst źródłaShimajiri, Takuya. The Nature of Ultralong C–C Bonds. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0670-3.
Pełny tekst źródłaLu, Wenjun, i Lihong Zhou. Oxidation of C─H Bonds. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119092490.
Pełny tekst źródłaYou, Shu-Li, red. Asymmetric Functionalization of C-H Bonds. Cambridge: Royal Society of Chemistry, 2015. http://dx.doi.org/10.1039/9781782621966.
Pełny tekst źródłaGoldberg, Karen I., i Alan S. Goldman, red. Activation and Functionalization of C—H Bonds. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0885.
Pełny tekst źródłaC-X bond formation. Heidelberg: Springer, 2010.
Znajdź pełny tekst źródłaTaillefer, Marc, i Dawei Ma, red. Amination and Formation of sp2 C-N Bonds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40546-4.
Pełny tekst źródła1945-, Fuchs Philip L., red. Reagents for direct functionalization of C-H bonds. Chichester, England: John Wiley, 2007.
Znajdź pełny tekst źródłaZucherman, Jerry J. The Formation of bonds to C, Si, Ge, Sn, Pb (part 2). New York, N.Y: VCH Publishers, 1989.
Znajdź pełny tekst źródłaCatalyst Design for the Ionic Hydrogenation of C=N Bonds. [New York, N.Y.?]: [publisher not identified], 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "C-C bonds"
Kakiuchi, Fumitoshi. "Catalytic Addition of C – H Bonds to C – C Multiple Bonds". W Topics in Organometallic Chemistry, 1–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/3418_2007_064.
Pełny tekst źródłaTreichel, P. M. "Reactions Involving C-H and C-C Bonds". W Inorganic Reactions and Methods, 230–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145296.ch199.
Pełny tekst źródłaBougioukou, Despina J., i Jon D. Stewart. "Reduction of CC Double Bonds". W Enzyme Catalysis in Organic Synthesis, 1111–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch27.
Pełny tekst źródłaBühler, Bruno, Katja Bühler i Frank Hollmann. "Oxyfunctionalization of CC Multiple Bonds". W Enzyme Catalysis in Organic Synthesis, 1269–324. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch31.
Pełny tekst źródłaRios, Ramon, Jorge Esteban i Xavier Companyó. "Cascade Reactions Forming C-C Bonds". W Stereoselective Organocatalysis, 351–80. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118604755.ch10.
Pełny tekst źródłaShimajiri, Takuya. "Discovery of Flexible Bonds Based on an Extremely Elongated C–C Single Bond". W The Nature of Ultralong C–C Bonds, 41–78. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0670-3_3.
Pełny tekst źródłaGhosh, Pradip, Marc-Etienne Moret i Robertus J. M. Klein Gebbink. "Catalytic Oxygenation of CC and CH Bonds". W Non-Noble Metal Catalysis, 355–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch14.
Pełny tekst źródła"4. C–C bonds". W High Pressure Organic Synthesis, 93–128. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110556841-004.
Pełny tekst źródła"C–C Bond Formation". W Biocatalysis in Organic Synthesis: The Retrosynthesis Approach, 217–53. The Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/bk9781782625308-00217.
Pełny tekst źródła"C". W Encyclopedia of Municipal Bonds, 28–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118531624.ch3.
Pełny tekst źródłaStreszczenia konferencji na temat "C-C bonds"
Mbomson, Ifeoma G., Scott McMeekin, Richard De La Rue i Nigel P. Johnson. "Matching plasmon resonances to the C=C and C-H bonds in estradiol". W SPIE BiOS, redaktorzy Tuan Vo-Dinh i Joseph R. Lakowicz. SPIE, 2015. http://dx.doi.org/10.1117/12.2081409.
Pełny tekst źródłaParsch, Jörg, i Joachim W. Engels. "C–F···H–C hydrogen bonds in crystals of fluorobenzene ribonucleosides". W XIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 1999. http://dx.doi.org/10.1135/css199902011.
Pełny tekst źródłaTHORPE, M. F., BRANDON M. HESPENHEIDE, YI YANG i LESLIE A. KUHN. "FLEXIBILITY AND CRITICAL HYDROGEN BONDS IN CYTOCHROME C". W Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447331_0018.
Pełny tekst źródłaSiewert, Inke. "Electroreduction of C=O Bonds in CO2, Ketones, and Aldehydes". W MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.032.
Pełny tekst źródłaŽENÍŠEK, Jaroslav, Pavel SOUČEK, Pavel ONDRAČKA i Petr VAŠINA. "STUDY OF W-X BONDS IN AMORPHOUS W-B-C". W NANOCON 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/nanocon.2021.4380.
Pełny tekst źródłasaki, zeinab, Nahla Talebi, Abedin Zabardasti i Ali Kakanejadifard. "The B–C and C–C bonds as preferred electron source for H-bondand Li-bond interactions in complex pairing of C4B2H6 with HFand LiH molecules". W The 20th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecsoc-20-e018.
Pełny tekst źródłaRollier, Floriane, Marta Costa Figueiredo i Emiel Hensen. "The influence of copper particle size on the electrochemical reduction of CO to products with C-C bonds". W Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.074.
Pełny tekst źródłaZárate, Cayetana, i Rubén Martin. "Ni-Catalyzed Silylation of Inert C-O Bonds under Mild Conditions". W 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013101312526.
Pełny tekst źródłaMarco de Lucas, M. C., J. M. Chappé, L. Cunha, C. Moura, J. F. Pierson, L. Imhoff, V. Potin i in. "Structure and Chemical Bonds in Black Ti(C, N, O) Thin Films". W XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482693.
Pełny tekst źródłaCosta, Roberta L. da, i Simon J. Garden. "Phenanthridine derivatives via palladium catalyzed intramolecular functionalization of C(sp2)-H bonds." W 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013819134214.
Pełny tekst źródłaRaporty organizacyjne na temat "C-C bonds"
Novoa, J. J., Myung-Hwan Whangbo i J. M. Williams. Intermolecular interactions involving C-H bonds, 3, Structure and energetics of the interaction between CH{sub 4} and CN{sup {minus}}. Office of Scientific and Technical Information (OSTI), grudzień 1991. http://dx.doi.org/10.2172/10187953.
Pełny tekst źródłaGland, J. L. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/10102894.
Pełny tekst źródłaGland, J. L. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/6915688.
Pełny tekst źródłaGland, J. L. Hydrogen Induced C-C, C-N, & C-S Bond Activation on Pt & Ni Surfaces. Office of Scientific and Technical Information (OSTI), lipiec 2004. http://dx.doi.org/10.2172/830711.
Pełny tekst źródłaGland, J. L. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary. Office of Scientific and Technical Information (OSTI), grudzień 1994. http://dx.doi.org/10.2172/10110807.
Pełny tekst źródłaBiermann, Ursula, i Jürgen O. Metzger. Functionalization of Unsaturated Fatty Compounds Across the C,C Double Bond. AOCS, maj 2011. http://dx.doi.org/10.21748/lipidlibrary.39193.
Pełny tekst źródłaLees, Alistair J. Photochemistry of Intermolecular C-H Bond Activation Reactions. Office of Scientific and Technical Information (OSTI), czerwiec 2000. http://dx.doi.org/10.2172/761218.
Pełny tekst źródłaMcFarland, Eric, Horia Metiu i Michael Gordon. Fundamental Mechanisms of C-X bond Transformations on Complex Molten Surfaces. Office of Scientific and Technical Information (OSTI), lipiec 2019. http://dx.doi.org/10.2172/1580080.
Pełny tekst źródłaAsplund, M. C. Time resolved infrared studies of C-H bond activation by organometallics. Office of Scientific and Technical Information (OSTI), czerwiec 1998. http://dx.doi.org/10.2172/290889.
Pełny tekst źródłaKimura, Mineo. Correlation between shape resonance energies and C-C bond length in carbon-containing molecules: Elastic electron scattering and carbon K-shell excitation by photons. Office of Scientific and Technical Information (OSTI), czerwiec 1994. http://dx.doi.org/10.2172/10159440.
Pełny tekst źródła