Artykuły w czasopismach na temat „Bulk Graphene”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Bulk Graphene”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Simionescu, Octavian-Gabriel, Andrei Avram, Bianca Adiaconiţă, Petruţa Preda, Cătălin Pârvulescu, Florin Năstase, Eugen Chiriac i Marioara Avram. "Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials". Micromachines 14, nr 6 (23.05.2023): 1096. http://dx.doi.org/10.3390/mi14061096.
Pełny tekst źródłaEnglert, Jan M., Christoph Dotzer, Guang Yang, Martin Schmid, Christian Papp, J. Michael Gottfried, Hans-Peter Steinrück, Erdmann Spiecker, Frank Hauke i Andreas Hirsch. "Covalent bulk functionalization of graphene". Nature Chemistry 3, nr 4 (20.03.2011): 279–86. http://dx.doi.org/10.1038/nchem.1010.
Pełny tekst źródłaQuintana, Mildred, Alejandro Montellano, Antonio Esau del Rio Castillo, Gustaaf Van Tendeloo, Carla Bittencourt i Maurizio Prato. "Selective organic functionalization of graphene bulk or graphene edges". Chemical Communications 47, nr 33 (2011): 9330. http://dx.doi.org/10.1039/c1cc13254g.
Pełny tekst źródłaTian, Leilei, Xin Wang, Li Cao, Mohammed J. Meziani, Chang Yi Kong, Fushen Lu i Ya-Ping Sun. "Preparation of Bulk13C-Enriched Graphene Materials". Journal of Nanomaterials 2010 (2010): 1–5. http://dx.doi.org/10.1155/2010/742167.
Pełny tekst źródłaJi, Qianyu, Bowen Wang, Yajuan Zheng, Fanguang Zeng i Bingheng Lu. "Field emission performance of bulk graphene". Diamond and Related Materials 124 (kwiecień 2022): 108940. http://dx.doi.org/10.1016/j.diamond.2022.108940.
Pełny tekst źródłaFeng, Xiayu, Wufeng Chen i Lifeng Yan. "Electrochemical reduction of bulk graphene oxide materials". RSC Advances 6, nr 83 (2016): 80106–13. http://dx.doi.org/10.1039/c6ra17469h.
Pełny tekst źródłaAbramov, A. S., D. A. Evseev, I. O. Zolotovskii i D. I. Sementsov. "Dispersion of Bulk Waves in a Graphene–Dielectric–Graphene Structure". Optics and Spectroscopy 126, nr 2 (luty 2019): 154–60. http://dx.doi.org/10.1134/s0030400x19020024.
Pełny tekst źródłaChe, Yongli, Guizhong Zhang, Yating Zhang, Xiaolong Cao, Mingxuan Cao, Yu Yu, Haitao Dai i Jianquan Yao. "Solution-processed graphene phototransistor functionalized with P3HT/graphene bulk heterojunction". Optics Communications 425 (październik 2018): 161–65. http://dx.doi.org/10.1016/j.optcom.2018.04.058.
Pełny tekst źródłaEndoh, Norifumi, Shoji Akiyama, Keiichiro Tashima, Kento Suwa, Takamasa Kamogawa, Roki Kohama, Kazutoshi Funakubo i in. "High-Quality Few-Layer Graphene on Single-Crystalline SiC thin Film Grown on Affordable Wafer for Device Applications". Nanomaterials 11, nr 2 (4.02.2021): 392. http://dx.doi.org/10.3390/nano11020392.
Pełny tekst źródłaKUMAR, AMIT, J. M. POUMIROL, W. ESCOFFIER, M. GOIRAN, B. RAQUET i J. M. BROTO. "ELECTRONIC PROPERTIES OF GRAPHENE, FEW-LAYER GRAPHENE, AND BULK GRAPHITE UNDER VERY HIGH MAGNETIC FIELD". International Journal of Nanoscience 10, nr 01n02 (luty 2011): 43–47. http://dx.doi.org/10.1142/s0219581x11007703.
Pełny tekst źródłaMorsin, Marriatyi, i Yusmeeraz Yusof. "The Ab-initio Study of Bulk Single Layer Defected Graphene Towards Graphene Device". International Journal of Electrical and Computer Engineering (IJECE) 7, nr 3 (1.06.2017): 1444. http://dx.doi.org/10.11591/ijece.v7i3.pp1444-1451.
Pełny tekst źródłaDobrescu, Oana-Ancuta, i M. Apostol. "Tight-binding approximation for bulk and edge electronic states in graphene". Canadian Journal of Physics 93, nr 5 (maj 2015): 580–84. http://dx.doi.org/10.1139/cjp-2014-0313.
Pełny tekst źródłaAhmad, Sara I., Hicham Hamoudi, Ahmed Abdala, Zafar K. Ghouri i Khaled M. Youssef. "Graphene-Reinforced Bulk Metal Matrix Composites: Synthesis, Microstructure, and Properties". REVIEWS ON ADVANCED MATERIALS SCIENCE 59, nr 1 (22.04.2020): 67–114. http://dx.doi.org/10.1515/rams-2020-0007.
Pełny tekst źródłaYoon, Jong Chan, Zonghoon Lee i Gyeong Hee Ryu. "Atomic Arrangements of Graphene-like ZnO". Nanomaterials 11, nr 7 (14.07.2021): 1833. http://dx.doi.org/10.3390/nano11071833.
Pełny tekst źródłaXue, Wei-Dong, i Rui Zhao. "A simple approach towards nitrogen-doped graphene and metal/graphene by solid-state pyrolysis of metal phthalocyanine". New J. Chem. 38, nr 7 (2014): 2993–98. http://dx.doi.org/10.1039/c4nj00331d.
Pełny tekst źródłaYu, Fei, M. Bahner i Vikram K. Kuppa. "On the Role of Graphene in Polymer-Based Bulk Heterojunction Solar Cells". Key Engineering Materials 521 (sierpień 2012): 47–60. http://dx.doi.org/10.4028/www.scientific.net/kem.521.47.
Pełny tekst źródłaDu, Yong, Jia Li, Jiayue Xu i Per Eklund. "Thermoelectric Properties of Reduced Graphene Oxide/Bi2Te3 Nanocomposites". Energies 12, nr 12 (24.06.2019): 2430. http://dx.doi.org/10.3390/en12122430.
Pełny tekst źródłaYeddala, Munaiah, Pallavi Thakur, Anugraha A i Tharangattu N. Narayanan. "Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide". Beilstein Journal of Nanotechnology 11 (9.03.2020): 432–42. http://dx.doi.org/10.3762/bjnano.11.34.
Pełny tekst źródłaCarotenuto, G., D. Altamura, C. Giannini i D. Siliqi. "XRD characterization of bulk graphene-based material". Acta Crystallographica Section A Foundations of Crystallography 67, a1 (22.08.2011): C558. http://dx.doi.org/10.1107/s0108767311085886.
Pełny tekst źródłaSykam, Nagaraju, i G. Mohan Rao. "Bulk Synthesis of Reduced Graphene Oxide Cakes". Graphene 3, nr 1 (1.12.2015): 25–28. http://dx.doi.org/10.1166/graph.2015.1058.
Pełny tekst źródłaKlechikov, Alexey G., Guillaume Mercier, Pilar Merino, Santiago Blanco, César Merino i Alexandr V. Talyzin. "Hydrogen storage in bulk graphene-related materials". Microporous and Mesoporous Materials 210 (lipiec 2015): 46–51. http://dx.doi.org/10.1016/j.micromeso.2015.02.017.
Pełny tekst źródłaHu, Zengrong, Feng Chen, Dong Lin, Qiong Nian, Pedram Parandoush, Xing Zhu, Zhuqiang Shao i Gary J. Cheng. "Laser additive manufacturing bulk graphene–copper nanocomposites". Nanotechnology 28, nr 44 (12.10.2017): 445705. http://dx.doi.org/10.1088/1361-6528/aa8946.
Pełny tekst źródłaChu, Ke, i Chengchang Jia. "Enhanced strength in bulk graphene-copper composites". physica status solidi (a) 211, nr 1 (28.10.2013): 184–90. http://dx.doi.org/10.1002/pssa.201330051.
Pełny tekst źródłaLv, Xin, Yi Huang, Zhibo Liu, Jianguo Tian, Yan Wang, Yanfeng Ma, Jiajie Liang, Shipeng Fu, Xiangjian Wan i Yongsheng Chen. "Photoconductivity of Bulk-Film-Based Graphene Sheets". Small 5, nr 14 (17.07.2009): 1682–87. http://dx.doi.org/10.1002/smll.200900044.
Pełny tekst źródłaBaimova, Julia A., Leysan Kh Rysaeva, Bo Liu, Sergey V. Dmitriev i Kun Zhou. "From flat graphene to bulk carbon nanostructures". physica status solidi (b) 252, nr 7 (1.06.2015): 1502–7. http://dx.doi.org/10.1002/pssb.201451654.
Pełny tekst źródłaMcCoy, Thomas M., Liliana de Campo, Anna V. Sokolova, Isabelle Grillo, Ekaterina I. Izgorodina i Rico F. Tabor. "Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability". Physical Chemistry Chemical Physics 20, nr 24 (2018): 16801–16. http://dx.doi.org/10.1039/c8cp02738b.
Pełny tekst źródłaChan, Bun, i Amir Karton. "Polycyclic aromatic hydrocarbons: from small molecules through nano-sized species towards bulk graphene". Physical Chemistry Chemical Physics 23, nr 32 (2021): 17713–23. http://dx.doi.org/10.1039/d1cp01659h.
Pełny tekst źródłaZheng, Li, Xinhong Cheng, Peiyi Ye, Lingyan Shen, Qian Wang, Dongliang Zhang, Zhongjian Wang, Yuehui Yu i Xinke Yu. "Semiconductor-like nanofilms assembled with AlN and TiN laminations for nearly ideal graphene-based heterojunction devices". Journal of Materials Chemistry C 4, nr 47 (2016): 11067–73. http://dx.doi.org/10.1039/c6tc03514k.
Pełny tekst źródłaSharma, Abhishek, Vyas Mani Sharma i Jinu Paul. "Fabrication of bulk aluminum-graphene nanocomposite through friction stir alloying". Journal of Composite Materials 54, nr 1 (27.06.2019): 45–60. http://dx.doi.org/10.1177/0021998319859427.
Pełny tekst źródłaAlessandrino, Luigi, Christos Pavlakis, Nicolò Colombani, Micòl Mastrocicco i Vassilis Aschonitis. "Effects of Graphene on Soil Water-Retention Curve, van Genuchten Parameters, and Soil Pore Size Distribution—A Comparison with Traditional Soil Conditioners". Water 15, nr 7 (25.03.2023): 1297. http://dx.doi.org/10.3390/w15071297.
Pełny tekst źródłaSun, Chuan, Yujia Huang, Qiang Shen, Wei Wang, Wei Pan, Peng’an Zong, Li Yang, Yan Xing i Chunlei Wan. "Embedding two-dimensional graphene array in ceramic matrix". Science Advances 6, nr 39 (wrzesień 2020): eabb1338. http://dx.doi.org/10.1126/sciadv.abb1338.
Pełny tekst źródłaWang, Chunhui, Yibin Li, Xiaodong He, Yujie Ding, Qingyu Peng, Wenqi Zhao, Enzheng Shi, Shiting Wu i Anyuan Cao. "Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene". Nanoscale 7, nr 17 (2015): 7550–58. http://dx.doi.org/10.1039/c5nr00996k.
Pełny tekst źródłaAhmad, Sohail, i Sugata Mukherjee. "A Comparative Study of Electronic Properties of Bulk MoS2 and Its Monolayer Using DFT Technique: Application of Mechanical Strain on MoS2 Monolayer". Graphene 03, nr 04 (2014): 52–59. http://dx.doi.org/10.4236/graphene.2014.34008.
Pełny tekst źródłaReza Borghei, Hamid, Bashir Behjat i Mojtaba Yazdani. "The impact of graphene nanoparticle additives on the strength of simple and hybrid adhesively bonded joints". Journal of Composite Materials 53, nr 23 (11.12.2018): 3335–46. http://dx.doi.org/10.1177/0021998318817588.
Pełny tekst źródłaOSHIMA, C., N. TANAKA, A. ITOH, E. ROKUTA, K. YAMASHITA i T. SAKURAI. "A HETEROEPITAXIAL MULTI-ATOMIC-LAYER SYSTEM OF GRAPHENE AND h-BN". Surface Review and Letters 07, nr 05n06 (październik 2000): 521–25. http://dx.doi.org/10.1142/s0218625x00000683.
Pełny tekst źródłaJiang, Rongrong, Xufeng Zhou, Qile Fang i Zhaoping Liu. "Copper–graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties". Materials Science and Engineering: A 654 (styczeń 2016): 124–30. http://dx.doi.org/10.1016/j.msea.2015.12.039.
Pełny tekst źródłaLiu, Yu, Yongpan Zeng, Qiang Guo, Jian Zhang, Zhiqiang Li, Ding-Bang Xiong, Xiaoyan Li i Di Zhang. "Bulk nanolaminated graphene (reduced graphene oxide)–aluminum composite tolerant of radiation damage". Acta Materialia 196 (wrzesień 2020): 17–29. http://dx.doi.org/10.1016/j.actamat.2020.06.018.
Pełny tekst źródłaChen, Wangqiao, Peishuang Xiao, Honghui Chen, Hongtao Zhang, Qichun Zhang i Yongsheng Chen. "Polymeric Graphene Bulk Materials with a 3D Cross-Linked Monolithic Graphene Network". Advanced Materials 31, nr 9 (17.08.2018): 1802403. http://dx.doi.org/10.1002/adma.201802403.
Pełny tekst źródłaMao, Min, Shuzhen Chen, Ping He, Hailin Zhang i Hongtao Liu. "Facile and economical mass production of graphene dispersions and flakes". J. Mater. Chem. A 2, nr 12 (2014): 4132–35. http://dx.doi.org/10.1039/c3ta14632d.
Pełny tekst źródłaRahman, Md Mahfuzur, Mohaiminul Islam, Rakesh Roy, Hassan Younis, Maryam AlNahyan i Hammad Younes. "Carbon Nanomaterial-Based Lubricants: Review of Recent Developments". Lubricants 10, nr 11 (27.10.2022): 281. http://dx.doi.org/10.3390/lubricants10110281.
Pełny tekst źródłaDuan, Junxi, Xiaoming Wang, Xinyuan Lai, Guohong Li, Kenji Watanabe, Takashi Taniguchi, Mona Zebarjadi i Eva Y. Andrei. "High thermoelectricpower factor in graphene/hBN devices". Proceedings of the National Academy of Sciences 113, nr 50 (23.11.2016): 14272–76. http://dx.doi.org/10.1073/pnas.1615913113.
Pełny tekst źródłaOnwona-Agyeman, Boateng, Yong Sun i Hayami Hattori. "Charge transport measurements in compressed bulk graphene oxide". International Journal of Materials Research 111, nr 7 (1.08.2020): 552–58. http://dx.doi.org/10.1515/ijmr-2020-1110704.
Pełny tekst źródłaRedmond, Kendra. "Bulk graphene retains superelastic properties at cryogenic temperatures". MRS Bulletin 44, nr 7 (lipiec 2019): 526. http://dx.doi.org/10.1557/mrs.2019.164.
Pełny tekst źródłaTripathi, D., Ashish Bhatnagar, Shalini Raj, D. K. Rai i T. K. Dey. "Levitation force of Graphene added bulk MgB2 superconductor". Cryogenics 118 (wrzesień 2021): 103343. http://dx.doi.org/10.1016/j.cryogenics.2021.103343.
Pełny tekst źródłaSharma, S. S., Vinay Sharma, Rajveer Singh, Subodh Srivastva, Preetam Sharma i Y. K. Vijay. "Bulk Heterojunction Solar Cells Based on Graphene Nanoplatelets". Advanced Electrochemistry 1, nr 2 (1.08.2013): 128–32. http://dx.doi.org/10.1166/adel.2013.1027.
Pełny tekst źródłaZhang, Liwei, Zhengren Zhang, Chaoyang Kang, Bei Cheng, Liang Chen, Xuefeng Yang, Jian Wang, Weibing Li i Baoji Wang. "Tunable bulk polaritons of graphene-based hyperbolic metamaterials". Optics Express 22, nr 11 (30.05.2014): 14022. http://dx.doi.org/10.1364/oe.22.014022.
Pełny tekst źródłaSingh, Eric, i Hari Singh Nalwa. "Graphene-Based Bulk-Heterojunction Solar Cells: A Review". Journal of Nanoscience and Nanotechnology 15, nr 9 (1.09.2015): 6237–78. http://dx.doi.org/10.1166/jnn.2015.11654.
Pełny tekst źródłaShen, Chen, Elizabeth Barrios i Lei Zhai. "Bulk Polymer-Derived Ceramic Composites of Graphene Oxide". ACS Omega 3, nr 4 (10.04.2018): 4006–16. http://dx.doi.org/10.1021/acsomega.8b00492.
Pełny tekst źródłaYang, Zhi, Guoqiang Lan, Bin Ouyang, Li-Chun Xu, Ruiping Liu, Xuguang Liu i Jun Song. "The thermoelectric performance of bulk three-dimensional graphene". Materials Chemistry and Physics 183 (listopad 2016): 6–10. http://dx.doi.org/10.1016/j.matchemphys.2016.08.050.
Pełny tekst źródłaGonzalez de la Cruz, G. "Bulk and surface plasmons in graphene finite superlattices". Superlattices and Microstructures 125 (styczeń 2019): 315–21. http://dx.doi.org/10.1016/j.spmi.2018.11.014.
Pełny tekst źródła