Gotowa bibliografia na temat „Bulk Graphene”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Bulk Graphene”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Bulk Graphene"
Simionescu, Octavian-Gabriel, Andrei Avram, Bianca Adiaconiţă, Petruţa Preda, Cătălin Pârvulescu, Florin Năstase, Eugen Chiriac i Marioara Avram. "Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials". Micromachines 14, nr 6 (23.05.2023): 1096. http://dx.doi.org/10.3390/mi14061096.
Pełny tekst źródłaEnglert, Jan M., Christoph Dotzer, Guang Yang, Martin Schmid, Christian Papp, J. Michael Gottfried, Hans-Peter Steinrück, Erdmann Spiecker, Frank Hauke i Andreas Hirsch. "Covalent bulk functionalization of graphene". Nature Chemistry 3, nr 4 (20.03.2011): 279–86. http://dx.doi.org/10.1038/nchem.1010.
Pełny tekst źródłaQuintana, Mildred, Alejandro Montellano, Antonio Esau del Rio Castillo, Gustaaf Van Tendeloo, Carla Bittencourt i Maurizio Prato. "Selective organic functionalization of graphene bulk or graphene edges". Chemical Communications 47, nr 33 (2011): 9330. http://dx.doi.org/10.1039/c1cc13254g.
Pełny tekst źródłaTian, Leilei, Xin Wang, Li Cao, Mohammed J. Meziani, Chang Yi Kong, Fushen Lu i Ya-Ping Sun. "Preparation of Bulk13C-Enriched Graphene Materials". Journal of Nanomaterials 2010 (2010): 1–5. http://dx.doi.org/10.1155/2010/742167.
Pełny tekst źródłaJi, Qianyu, Bowen Wang, Yajuan Zheng, Fanguang Zeng i Bingheng Lu. "Field emission performance of bulk graphene". Diamond and Related Materials 124 (kwiecień 2022): 108940. http://dx.doi.org/10.1016/j.diamond.2022.108940.
Pełny tekst źródłaFeng, Xiayu, Wufeng Chen i Lifeng Yan. "Electrochemical reduction of bulk graphene oxide materials". RSC Advances 6, nr 83 (2016): 80106–13. http://dx.doi.org/10.1039/c6ra17469h.
Pełny tekst źródłaAbramov, A. S., D. A. Evseev, I. O. Zolotovskii i D. I. Sementsov. "Dispersion of Bulk Waves in a Graphene–Dielectric–Graphene Structure". Optics and Spectroscopy 126, nr 2 (luty 2019): 154–60. http://dx.doi.org/10.1134/s0030400x19020024.
Pełny tekst źródłaChe, Yongli, Guizhong Zhang, Yating Zhang, Xiaolong Cao, Mingxuan Cao, Yu Yu, Haitao Dai i Jianquan Yao. "Solution-processed graphene phototransistor functionalized with P3HT/graphene bulk heterojunction". Optics Communications 425 (październik 2018): 161–65. http://dx.doi.org/10.1016/j.optcom.2018.04.058.
Pełny tekst źródłaEndoh, Norifumi, Shoji Akiyama, Keiichiro Tashima, Kento Suwa, Takamasa Kamogawa, Roki Kohama, Kazutoshi Funakubo i in. "High-Quality Few-Layer Graphene on Single-Crystalline SiC thin Film Grown on Affordable Wafer for Device Applications". Nanomaterials 11, nr 2 (4.02.2021): 392. http://dx.doi.org/10.3390/nano11020392.
Pełny tekst źródłaKUMAR, AMIT, J. M. POUMIROL, W. ESCOFFIER, M. GOIRAN, B. RAQUET i J. M. BROTO. "ELECTRONIC PROPERTIES OF GRAPHENE, FEW-LAYER GRAPHENE, AND BULK GRAPHITE UNDER VERY HIGH MAGNETIC FIELD". International Journal of Nanoscience 10, nr 01n02 (luty 2011): 43–47. http://dx.doi.org/10.1142/s0219581x11007703.
Pełny tekst źródłaRozprawy doktorskie na temat "Bulk Graphene"
Yu, Fei. "Graphene-enhanced Polymer Bulk-heterojunction Solar Cells". University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439310775.
Pełny tekst źródłaLi, Yangdi. "Innovative synthesis and characterization of large h-BN single crystals : From bulk to nanosheets". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI025/document.
Pełny tekst źródłaIn the past decades, due to their exceptional chemical and thermal stabilities together with their electrical insulation properties, hexagonal boron nitride nanosheets (BNNSs) have become a promising support substrate for graphene and promoted the incentive of various van der Waals heterostructures. For such applications, BNNSs are generally obtained by Chemical Vapor Deposition (CVD) or exfoliation. In order to achieve high quality and large BNNSs, our group has proposed a novel synthesis strategy based on the Polymer Derived Ceramics (PDCs) route combined with sintering techniques: Spark Plasma Sintering (SPS) or Hot Isostatic Pressing (HIP). Since hexagonal boron nitride (h-BN) crystallization is a key point in the synthesis of high quality BNNSs, efforts have been led to understand the beneficial role of a promotor of crystallization (Li3N), adopting a suitable in situ dynamic approach. It has been established that Li3N does improve the crystallization level of the product, and lower the transformation temperatures from polyborazylene to h-BN. Then, we have further investigate the influence of the SPS sintering temperature (1200-1950°C) and of the crystal promoter content (Li3N, 0-10 wt.%) on BN growth. The tested SPS parameters strongly modify the size of the resulting h-BN flakes. For an optimal Li3N concentration of 5 wt.%, h-BN flakes larger than 200 μm2 (average flake area) have been obtained. A high degree of crystallinity and purity have been achieved, even if the very-sensitive cathodoluminescence technic indicated traces of impurities, probably due to surrounding graphite parts of the SPS. Few-layered BNNSs have been successfully isolated, through exfoliation process. As a final application purpose, further physical measurements have confirmed that SPS derived h-BN exhibits an interesting dielectric constant of 3.9 associated with a dielectric strength of 0.53 V/nm. Due to a very high compact character of SPS-derivative h-BN crystals, the post-exfoliation step is made very difficult, resulting in BNNSs of tens of microns lateral size. Therefore, we have studied another sintering procedure by HIP for the ceramization process. Through this combination, we aim to promote the size of h-BN single crystals, leading to larger size exfoliated BNNSs. Characterizations from bulk crystals to BNNSs have been carried out in three aspects: morphology, lattice structure and chemical composition. This novel attempt has provided us transparent and colorless h-BN single crystals with large lateral size, up to 2000 μm. Besides, BNNSs with high purity have also been confirmed. HIP, as a new ceramization process of PDCs, has to be considered as a promising way to obtain large h-BN single crystals and nanosheets for supporting graphene and 2D heterostructures
Cunning, Benjamin V. "An Exploration in Nano-Carbons: Bulk Graphene, Ultrafast Physics, Carbon-Nanotubes". Thesis, Griffith University, 2013. http://hdl.handle.net/10072/367408.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Physical Sciences
Science, Environment, Engineering and Technology
Full Text
Knapp, Marius [Verfasser], i Oliver [Akademischer Betreuer] Ambacher. "Graphene - from synthesis to the application as a virtually massless electrode material for bulk acoustic wave resonators". Freiburg : Universität, 2018. http://d-nb.info/1179694619/34.
Pełny tekst źródłaSrivastava, Deepanshu. "Effect of processing conditions and second-phase additives on thermoelectric properties of SrTiO3 based ceramics". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/effect-of-processing-conditions-and-secondphase-additives-on-thermoelectric-properties-of-srtio3-based-ceramics(ff3c590e-4fc5-4c5d-b47b-823369ae369d).html.
Pełny tekst źródłaMao, Fang. "Synthesis, Characterization, and Evaluation of Ag-based Electrical Contact Materials". Doctoral thesis, Uppsala universitet, Oorganisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-320235.
Pełny tekst źródłaXu, Junjie [Verfasser], i R. [Akademischer Betreuer] Schuster. "A microcalorimetric study of concentration effects on the reaction entropy during Al- and Li- bulk deposition and of phase transitions during Li intercalation in graphite electrodes / Junjie Xu ; Betreuer: R. Schuster". Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1172351759/34.
Pełny tekst źródłaHuang, Xing-Tyng, i 黃新亭. "Characterization Analysis of Graphene Films Prepared by Graphite Bulk". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/x2w994.
Pełny tekst źródła國立臺北科技大學
材料科學與工程研究所
102
Graphene is a two-dimensional crystal of carbon atoms arranged in a honeycomb lattice with excellent properties such as high conductivity,high mechanical stress, high specific surface area, and high electron mobility. In this study, graphite bulk of metal films generated on the high temperature catalytic principle. Graphite powder pressed into bulk ingot, ingot as graphite bulk and then to the substrate, respectively, the composite sputtering a metal films (copper films, nickel films) on the surface of the graphite bulk ingot, and then by vacuum sintering furnace heat treatment, the carbon atom at time (1hr) diffusion within the graphite bulk to result metal films formed on the surface of the bulk ingot silvery graphene films, in the same identical process parameters, with three kinds of heat treatment temperature (1000°C, 900°C, 800°C) different ways to scanning electron microscope of three different heat treatment temperatures of the metal films surface wrinkling stack structure. By Raman spectrum, it is discovered that G peak, which is quite sharp, is at the position of 1580 cm-1, and 2D peak, which is a characteristics of graphene, is at about 2750 cm-1,and found in the resulting two-dimensional crystal of the graphite films, In this experiment to see graphene films heat treatment temperature 1000 ° C and 800 ° C, 900 ° C compared to the heat treatment temperature, in the graphene films 1000 ° C generated more large area continuous graphite films, 900 ° C graphite films area and heat treatment 1000 ° C no difference is less and less of the graphene films generated 800 ° C, and a small area is not continuous graphite films.
Basu, Dipanjan. "Quantum transport and bulk calculations for graphene-based devices". Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-12-2081.
Pełny tekst źródłatext
Chuang, Shu-Yu, i 莊舒伃. "Measurement and Application of Lithium Niobate Bulk Wave Sensors with Graphene Film". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/88609872229863369832.
Pełny tekst źródła大同大學
機械工程學系(所)
102
Global warming have been an important issue for many years. It’s because the carbon dioxide and other greenhouse gases are increasing constantly. With industrial development and progress, the emission of exhaust from factory、automobile and motorcycle is the culprit caused by rising carbon dioxide concentration in atmospheric. A variety of policies to reduce carbon dioxide emissions has been undertaken internationally, in order to monitor the emissions of carbon dioxide effectively and trace concentrations of atmospheric carbon dioxide, it's necessary to develop a low cost and high sensitivity sensor for carbon dioxide. The surface acoustic wave gas sensor has many characteristics like good stability, sensitivity, and low cost is adequate for use as carbon dioxide sensing. However, the LFE form gas sensor through bulk wave to detect, only used in liquid sensing in the past. This study try to combine the characteristic of graphene high sensitive for environment changes to improve the defect which LFE sensor doesn’t apply to use in gas measure. Then make a lightweight and sensitive gas sensing devices. In this paper, we used 128°YXLiNbO3 as a substrate and graphene as a sensing layer, oscillated by the form of the Lateral Field Excited to develop a bulk wave sensors to measure carbon dioxide. We use finite element analysis (COMSOL) to analyze the property of LFE seneor, frequency response and conductivity changes, and compared with experimental results. The results showed that when pass into 1000ppm carbon dioxide to chamber, the frequency drift about 210Hz, consistent with its trends and forecasts.
Książki na temat "Bulk Graphene"
Haasz, A. A. The effect of bulk hydrogen inventory on the chemical erosion of graphite. [S.l.]: [s.n.], 1986.
Znajdź pełny tekst źródłaHaasz, A. A. The effect of bulk hydrogen inventory on the chemical erosion of graphite. Mississauga, Ont: CFFTP, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Bulk Graphene"
Sharma, Rajni, Firoz Alam, A. K. Sharma, V. Dutta i S. K. Dhawan. "Hydrophobic ZnO Anchored Graphene Nanocomposite Based Bulk Hetro-Junction Solar Cells to Improve Short Circuit Current Density". W Graphene Materials, 245–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119131816.ch8.
Pełny tekst źródłaIssi, Jean-Paul, Paulo T. Araujo i Mildred S. Dresselhaus. "Electron and Phonon Transport in Graphene in and out of the Bulk". W Physics of Graphene, 65–112. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02633-6_3.
Pełny tekst źródłaXu, Liu-Jun, i Ji-Ping Huang. "Theory for Thermal Edge States: Graphene-Like Convective Lattice". W Transformation Thermotics and Extended Theories, 305–15. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_22.
Pełny tekst źródłaHaldar, S., S. Bhandary, P. Chandrachud, B. S. Pujari, M. I. Katsnelson, O. Eriksson, D. Kanhere i B. Sanyal. "Ab Initio Studies on the Hydrogenation at the Edges and Bulk of Graphene". W Carbon Nanostructures, 203–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_25.
Pełny tekst źródłaChen, D., i L. Zhang. "Harmonic Vibration of Inclined Porous Nanocomposite Beams". W Lecture Notes in Civil Engineering, 497–501. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_52.
Pełny tekst źródłaPrasad, T. N. V. K. V., S. Adam, P. Visweswara Rao, Venkata Subbaiah Kotakadi, P. Sudhakar, B. Ravindra Reddy, B. Bhaskar i T. Giridhara Krishna. "Novel Effects of Phytogenic Bulk Graphene on Germination and Growth of Monocots and Dicots". W Lecture Notes on Multidisciplinary Industrial Engineering, 493–506. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7643-6_40.
Pełny tekst źródłaOzdemir, Servet. "Bulk Versus Surface Conduction in Rhombohedral Graphite Films". W Springer Theses, 85–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88307-2_4.
Pełny tekst źródłaCambronero, L. E. G., P. Sánchez, J. M. Ruiz-Román, J. Pous i F. A. Corpas. "Radial Crushing Strength of Bronce with Nickel-Graphite Additions". W Materials Development and Processing - Bulk Amorphous Materials, Undercooling and Powder Metallurgy, 315–22. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607277.ch51.
Pełny tekst źródłaKhorkov, Kirill, Dmitriy Kochuev, Ruslan Chkalov, Valery Prokoshev i Sergei Arakelian. "Nonlinear Dynamic Processes in Laser-Induced Transitions to Low-Dimensional Carbon Nanostructures in Bulk Graphite Unit". W New Trends in Nonlinear Dynamics, 131–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34724-6_14.
Pełny tekst źródła"Electrochemical Exfoliation: A Cost-Effective Approach to Produce Graphene Nanoplatelets in Bulk Quantities". W Graphite, Graphene, and Their Polymer Nanocomposites, 162–91. CRC Press, 2012. http://dx.doi.org/10.1201/b13051-8.
Pełny tekst źródłaStreszczenia konferencji na temat "Bulk Graphene"
Chen, Zhen, Wanyoung Jang, Wenzhong Bao, Chun Ning Lau i Chris Dames. "Heat Transfer in Encased Graphene". W ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88370.
Pełny tekst źródłaGhosh, Suchismita, Denis L. Nika, Evgenni P. Pokatilov, Irene Calizo i Alexander A. Balandin. "Extraordinary Thermal Conductivity of Graphene: Prospects of Thermal Management Applications". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22348.
Pełny tekst źródłaKhusyainov, D. I., A. V. Gorbatova, A. M. Buryakov i E. D. Mishina. "THz surface emission from bulk and monolayer WSe2". W PROCEEDINGS OF INTERNATIONAL CONGRESS ON GRAPHENE, 2D MATERIALS AND APPLICATIONS (2D MATERIALS 2019). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0055455.
Pełny tekst źródłaMukherjee, P. S., i K. Jayasankar. "Bulk production of graphene by innovative milling techniques". W Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-334.
Pełny tekst źródłaSandoz-Rosado, Emil, i Elon J. Terrell. "The Wear Characteristics of Graphene as an Atomically-Thin Protective Coating". W ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61135.
Pełny tekst źródłaMohapatra, P. K., Dushyant Kushavah, J. Mohapatra i B. P. Singh. "Interaction of graphene quantum dots with bulk semiconductor surfaces". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON CONDENSED MATTER PHYSICS 2014 (ICCMP 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4915443.
Pełny tekst źródłaCho, Won Bae, Hwang Woon Lee, Sun Young Choi, Jun Wan Kim, Dong-II Yeom, Fabian Rotermund, Jinho Kim i Byung Hee Hong. "Monolayer graphene saturable absorber for bulk laser mode-locking". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.jthe86.
Pełny tekst źródłaLei, Nan, Pengfei Li, Wei Xue i Jie Xu. "Gate-Free Graphene-Based Sensor for pH Monitoring". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65166.
Pełny tekst źródłaLiu, Ruiyi, Xiaohu Wu i Zheng Cui. "Photon Tunneling via Coupling Graphene Plasmons With Phonon Polaritons of Hexagonal Boron Nitride in Reststrahlen Bands". W ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62180.
Pełny tekst źródłaCai, Chun-Hua, Ming Qin i Jian-Qiu Huang. "High-performance bulk silicon interdigital capacitive temperature sensor based on graphene oxide". W 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411222.
Pełny tekst źródłaRaporty organizacyjne na temat "Bulk Graphene"
Pisani, William, Dane Wedgeworth, Michael Roth, John Newman i Manoj Shukla. Exploration of two polymer nanocomposite structure-property relationships facilitated by molecular dynamics simulation and multiscale modeling. Engineer Research and Development Center (U.S.), marzec 2023. http://dx.doi.org/10.21079/11681/46713.
Pełny tekst źródła