Artykuły w czasopismach na temat „Building thermal models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Building thermal models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhu, Jingwei, Olaf Wysocki, Christoph Holst i Thomas H. Kolbe. "Enriching Thermal Point Clouds of Buildings using Semantic 3D building Models". ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences X-4/W5-2024 (27.06.2024): 341–48. http://dx.doi.org/10.5194/isprs-annals-x-4-w5-2024-341-2024.
Pełny tekst źródłaAdán, Antonio, Blanca Quintana, Juan García Aguilar, Víctor Pérez i Francisco Javier Castilla. "Towards the Use of 3D Thermal Models in Constructions". Sustainability 12, nr 20 (15.10.2020): 8521. http://dx.doi.org/10.3390/su12208521.
Pełny tekst źródłaSun, Xuemei, Saihong Zhu, Hengxuan Zhu, Runze Duan i Jin Wang. "Comparison and analyses of two thermal performance evaluation models for a public building". Open Physics 17, nr 1 (31.12.2019): 916–26. http://dx.doi.org/10.1515/phys-2019-0089.
Pełny tekst źródłaCîrstolovean, Lucian, i Paraschiva Mizgan. "Validation of Building Energy Modeling Tools for a Residential Building in Brasov Area-Romania". Ovidius University Annals of Constanta - Series Civil Engineering 20, nr 1 (1.12.2018): 43–50. http://dx.doi.org/10.2478/ouacsce-2018-0004.
Pełny tekst źródłaNageler, Peter, Thomas Mach, Richard Heimrath, Hermann Schranzhofer i Christoph Hochenauer. "Generation Tool for Automated Thermal City Modelling". Applied Mechanics and Materials 887 (styczeń 2019): 292–99. http://dx.doi.org/10.4028/www.scientific.net/amm.887.292.
Pełny tekst źródłaOkazawa, Kazuki, Naoya Kaneko, Dafang Zhao, Hiroki Nishikawa, Ittetsu Taniguchi, Francky Catthoor i Takao Onoye. "Evaluation of Deep Learning-Based Non-Intrusive Thermal Load Monitoring". Energies 17, nr 9 (24.04.2024): 2012. http://dx.doi.org/10.3390/en17092012.
Pełny tekst źródłaHaghighat, F., i M. Chandrashekar. "System-Theoretic Models for Building Thermal Analysis". Journal of Solar Energy Engineering 109, nr 2 (1.05.1987): 79–88. http://dx.doi.org/10.1115/1.3268196.
Pełny tekst źródłaBoskic, Ljuboslav, i Igor Mezic. "Control-Oriented, Data-Driven Models of Thermal Dynamics". Energies 14, nr 5 (7.03.2021): 1453. http://dx.doi.org/10.3390/en14051453.
Pełny tekst źródłaRasku, Topi, Raimo Simson i Juha Kiviluoma. "Sensitivity of a Lumped-Capacitance Building Thermal Modelling Approach for Energy-Market-Scale Flexibility Studies". Buildings 14, nr 6 (1.06.2024): 1614. http://dx.doi.org/10.3390/buildings14061614.
Pełny tekst źródłaBoodi, Abhinandana, Karim Beddiar, Yassine Amirat i Mohamed Benbouzid. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives". Energies 15, nr 4 (11.02.2022): 1328. http://dx.doi.org/10.3390/en15041328.
Pełny tekst źródłaMacher, H., M. Boudhaim, P. Grussenmeyer, M. Siroux i T. Landes. "COMBINATION OF THERMAL AND GEOMETRIC INFORMATION FOR BIM ENRICHMENT". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W15 (23.08.2019): 719–25. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w15-719-2019.
Pełny tekst źródłaMavromatidis, Lazaros. "Constructal Evaluation of Polynomial Meta-Models for Dynamic Thermal Absorptivity Forecasting for Mixed-Mode nZEB Heritage Building Applications". Energies 16, nr 1 (30.12.2022): 429. http://dx.doi.org/10.3390/en16010429.
Pełny tekst źródłaMartínez Comesaña, Miguel, Lara Febrero-Garrido, Francisco Troncoso-Pastoriza i Javier Martínez-Torres. "Prediction of Building’s Thermal Performance Using LSTM and MLP Neural Networks". Applied Sciences 10, nr 21 (23.10.2020): 7439. http://dx.doi.org/10.3390/app10217439.
Pełny tekst źródłaLim, Hong Soo, i Gon Kim. "Development of Regression Models considering Time-Lag and Aerosols for Predicting Heating Loads in Buildings". Advances in Civil Engineering 2018 (2018): 1–19. http://dx.doi.org/10.1155/2018/4878021.
Pełny tekst źródłaHaj Hussein, M., S. Monna, A. Juaidi, A. Barlet, M. Baba i D. Bruneau. "Effect of thermal mass of insulated and non-insulated walls on building thermal performance and potential energy saving". Journal of Physics: Conference Series 2042, nr 1 (1.11.2021): 012159. http://dx.doi.org/10.1088/1742-6596/2042/1/012159.
Pełny tekst źródłaKorobkov, S., A. Gnyrya i V. Terekhov. "Aerodynamic and thermal interference between two building models". IOP Conference Series: Materials Science and Engineering 775 (18.04.2020): 012140. http://dx.doi.org/10.1088/1757-899x/775/1/012140.
Pełny tekst źródłaLomas, K. J., D. P. Bloomfield, A. Cole, F. Parand i A. A. Pinney. "Dynamic thermal models: Reliability for domestic building design". Building Services Engineering Research and Technology 12, nr 4 (listopad 1991): 115–28. http://dx.doi.org/10.1177/014362449101200401.
Pełny tekst źródłaMaurer, Christoph, Christoph Cappel i Tilmann E. Kuhn. "Simple models for building-integrated solar thermal systems". Energy and Buildings 103 (wrzesień 2015): 118–23. http://dx.doi.org/10.1016/j.enbuild.2015.05.047.
Pełny tekst źródłaMuhy Al-Din, Salar Salah, Hourakhsh Ahmad Nia i Rokhsaneh Rahbarianyazd. "Enhancing Sustainability in Building Design: Hybrid Approaches for Evaluating the Impact of Building Orientation on Thermal Comfort in Semi-Arid Climates". Sustainability 15, nr 20 (23.10.2023): 15180. http://dx.doi.org/10.3390/su152015180.
Pełny tekst źródłaGarcía, Juan, Blanca Quintana, Antonio Adán, Víctor Pérez i Francisco J. Castilla. "3D-TTA: A Software Tool for Analyzing 3D Temporal Thermal Models of Buildings". Remote Sensing 12, nr 14 (14.07.2020): 2250. http://dx.doi.org/10.3390/rs12142250.
Pełny tekst źródłaGonzález, Vicente Gutiérrez, Lissette Álvarez Colmenares, Jesús Fernando López Fidalgo, Germán Ramos Ruiz i Carlos Fernández Bandera. "Uncertainy’s Indices Assessment for Calibrated Energy Models". Energies 12, nr 11 (31.05.2019): 2096. http://dx.doi.org/10.3390/en12112096.
Pełny tekst źródłaAlbatayneh, Aiman, Dariusz Alterman, Adrian Page i Behdad Moghtaderi. "The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption". Sustainability 10, nr 10 (10.10.2018): 3609. http://dx.doi.org/10.3390/su10103609.
Pełny tekst źródłaDeconinck, An-Heleen, i Staf Roels. "Is stochastic grey-box modelling suited for physical properties estimation of building components from on-site measurements?" Journal of Building Physics 40, nr 5 (12.02.2017): 444–71. http://dx.doi.org/10.1177/1744259116688384.
Pełny tekst źródłaErişen, Serdar. "A Systematic Approach to Optimizing Energy-Efficient Automated Systems with Learning Models for Thermal Comfort Control in Indoor Spaces". Buildings 13, nr 7 (19.07.2023): 1824. http://dx.doi.org/10.3390/buildings13071824.
Pełny tekst źródłaGölzhäuser, Simon, i Lilli Frison. "Comparison of different deep neural networks for system identification of thermal building behavior". Journal of Physics: Conference Series 2600, nr 7 (1.11.2023): 072008. http://dx.doi.org/10.1088/1742-6596/2600/7/072008.
Pełny tekst źródłaPeng, Bo, i Sheng-Jen Hsieh. "Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building". Sensors 23, nr 10 (18.05.2023): 4857. http://dx.doi.org/10.3390/s23104857.
Pełny tekst źródłaKrstic-Furundzic, Aleksandra, i Vesna Kosoric. "Improvement of energy performances of existing buildings by application of solar thermal systems". Spatium, nr 20 (2009): 19–22. http://dx.doi.org/10.2298/spat0920019k.
Pełny tekst źródłaKorobkov, S. V., A. I. Gnyrya i V. I. Terekhov. "DYNAMIC AND THERMAL INTERFERENCE EFFECTS ON TWO NEIGHBOURING BUILDING MODELS". Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture 21, nr 5 (29.10.2019): 138–50. http://dx.doi.org/10.31675/1607-1859-2019-21-5-138-150.
Pełny tekst źródłaPark, Herie, i Sang-Bong Rhee. "IoT-Based Smart Building Environment Service for Occupants’ Thermal Comfort". Journal of Sensors 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/1757409.
Pełny tekst źródłaDeng, Kun, Siddharth Goyal, Prabir Barooah i Prashant G. Mehta. "Structure-preserving model reduction of nonlinear building thermal models". Automatica 50, nr 4 (kwiecień 2014): 1188–95. http://dx.doi.org/10.1016/j.automatica.2014.02.009.
Pełny tekst źródłaKramer, Rick, Jos van Schijndel i Henk Schellen. "Simplified thermal and hygric building models: A literature review". Frontiers of Architectural Research 1, nr 4 (grudzień 2012): 318–25. http://dx.doi.org/10.1016/j.foar.2012.09.001.
Pełny tekst źródłaAhmad, Q. T. "Review paper: Validation of building thermal and energy models". Building Services Engineering Research and Technology 19, nr 2 (maj 1998): 61–66. http://dx.doi.org/10.1177/014362449801900201.
Pełny tekst źródłaJiménez, M. J., i H. Madsen. "Models for describing the thermal characteristics of building components". Building and Environment 43, nr 2 (luty 2008): 152–62. http://dx.doi.org/10.1016/j.buildenv.2006.10.029.
Pełny tekst źródłaBoyer, H., J. P. Chabriat, B. Grondin-Perez, C. Tourrand i J. Brau. "Thermal building simulation and computer generation of nodal models". Building and Environment 31, nr 3 (maj 1996): 207–14. http://dx.doi.org/10.1016/0360-1323(96)00001-7.
Pełny tekst źródłaXi, Hongyan, Qilin Zhang, Zhiyi Ren, Guangchen Li i Yixing Chen. "Urban Building Energy Modeling with Parameterized Geometry and Detailed Thermal Zones for Complex Building Types". Buildings 13, nr 11 (24.10.2023): 2675. http://dx.doi.org/10.3390/buildings13112675.
Pełny tekst źródłaLin, Chen, Qiu Xia Wang i Xiao Tong Peng. "Parameter Analysis on Energy-Saving Behavior of a Steel Residential Building". Applied Mechanics and Materials 361-363 (sierpień 2013): 235–38. http://dx.doi.org/10.4028/www.scientific.net/amm.361-363.235.
Pełny tekst źródłaSigalingging, Roy Candra P. "Studi Dampak Penggunaan Insulasi pada Bangunan Rumah Tinggal Terhadap Konsumsi Energi Pendingin Ruangan". Journal of Science and Applicative Technology 5, nr 2 (12.12.2021): 418. http://dx.doi.org/10.35472/jsat.v5i2.610.
Pełny tekst źródłaSchwan, Lukas, Jakob Hahn, Michael Barton, Ronja Anders i Christian Schweigler. "Development of Reference Buildings to Analyze the Potential for Energy-Efficient Refurbishment of Buildings". Civil and Environmental Engineering Reports 29, nr 4 (1.12.2019): 198–217. http://dx.doi.org/10.2478/ceer-2019-0055.
Pełny tekst źródłaBehrouzi, Fatemeh, Adi Maimun Abdul Malik, Nor Azwadi Che Sidik, Mehdi Nakisa i Afiq Muhammad Yazid Witri. "Numerical Prediction of Thermal Effect on Flow Field around a High-Rise Building Model". Applied Mechanics and Materials 554 (czerwiec 2014): 680–85. http://dx.doi.org/10.4028/www.scientific.net/amm.554.680.
Pełny tekst źródłaZhou, Ao, Kwun-Wah Wong i Denvid Lau. "Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment". Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/279592.
Pełny tekst źródłaÁlvarez, José Antonio, Juan Ramón Rabuñal, Dolores García-Vidaurrázaga, Alberto Alvarellos i Alejandro Pazos. "Modeling of Energy Efficiency for Residential Buildings Using Artificial Neuronal Networks". Advances in Civil Engineering 2018 (28.11.2018): 1–10. http://dx.doi.org/10.1155/2018/7612623.
Pełny tekst źródłaLecomte, V., H. Macher i T. Landes. "COMBINATION OF THERMAL INFRARED IMAGES AND LASERSCANNING DATA FOR 3D THERMAL POINT CLOUD GENERATION ON BUILDINGS AND TREES". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-2/W1-2022 (8.12.2022): 129–36. http://dx.doi.org/10.5194/isprs-archives-xlviii-2-w1-2022-129-2022.
Pełny tekst źródłaIwaszczuk, D., i U. Stilla. "Alignment of 3D Building Models and TIR Video Sequences with Line Tracking". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-1 (7.11.2014): 17–24. http://dx.doi.org/10.5194/isprsannals-ii-1-17-2014.
Pełny tekst źródłaIgnjatovic, Marko, Bratislav Blagojevic, Mirko Stojiljkovic, Dejan Mitrovic, Aleksandar Andjelkovic i Milica Ljubenovic. "Sensitivity analysis for daily building operation from the energy and thermal comfort standpoint". Thermal Science 20, suppl. 5 (2016): 1485–500. http://dx.doi.org/10.2298/tsci16s5485i.
Pełny tekst źródłaJeong, Bonghoon, Donghyun Kim, Joosang Lee i Taeyeon Kim. "Development of Virtual Human Agents with Different Thermal Preferences for Energy and Thermal Comfort Simulation". E3S Web of Conferences 396 (2023): 01050. http://dx.doi.org/10.1051/e3sconf/202339601050.
Pełny tekst źródłaUSMAN HARUNA, IBRAHIM, IBRAHIM AHMAD RUFAI i DALHATU BALARABE YAHAYA. "THERMAL COMFORT MODEL DEVELOPMENT FOR OFFICE BUILDINGS WITH HYBRID DOWNDRAFT EVAPORATIVE COOLERS IN BAYERO UNIVERSITY KANO". BIMA JOURNAL OF SCIENCE AND TECHNOLOGY (2536-6041) 6, nr 01 (30.04.2022): 41–49. http://dx.doi.org/10.56892/bimajst.v6i01.312.
Pełny tekst źródłaIwaszczuk, D., i U. Stilla. "QUALITY ASSESSMENT OF BUILDING TEXTURES EXTRACTED FROM OBLIQUE AIRBORNE THERMAL IMAGERY". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-1 (1.06.2016): 3–8. http://dx.doi.org/10.5194/isprsannals-iii-1-3-2016.
Pełny tekst źródłaIwaszczuk, D., i U. Stilla. "QUALITY ASSESSMENT OF BUILDING TEXTURES EXTRACTED FROM OBLIQUE AIRBORNE THERMAL IMAGERY". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-1 (1.06.2016): 3–8. http://dx.doi.org/10.5194/isprs-annals-iii-1-3-2016.
Pełny tekst źródłaLomas, K. J. "Availability of monitored hourly building performance data for validating dynamic thermal models of buildings". Building Services Engineering Research and Technology 12, nr 2 (maj 1991): 71–74. http://dx.doi.org/10.1177/014362449101200203.
Pełny tekst źródłaMaistrenko, A. V. "Building structures thermal calculation". Advanced Engineering Research 21, nr 3 (18.10.2021): 260–67. http://dx.doi.org/10.23947/2687-1653-2021-21-3-260-267.
Pełny tekst źródła