Gotowa bibliografia na temat „Building- Earthquake”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Building- Earthquake”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Building- Earthquake"
Munthe, Agyanata Tua, i Abdul Gafur. "Comparative Analysis Study Of ATC-40 and SNI 1726-2012 Guidelines for Beam Structure Performance and Column Trans Studio Apartments Applications Using Dynamic Response Spectrum Analysis Methods". Journal of Applied Science, Engineering, Technology, and Education 1, nr 1 (31.08.2019): 46–55. http://dx.doi.org/10.35877/454ri.asci1169.
Pełny tekst źródłaMunthe, Agyanata Tua, i Abdul Gafur. "Comparative Analysis Study of ATC-40 and SNI 1726-2012 Guidelines For Beam Structure Performance and Column Trans Studio Apartments Applications Using Dynamic Response Spectrum Analysis Methods". Journal of World Conference (JWC) 2, nr 2 (31.03.2020): 48–57. http://dx.doi.org/10.29138/prd.v2i2.204.
Pełny tekst źródłaDwi Pratama, Andhika Ronald, Jojok Widodo Soetjipto i Krisnamurti Krisnamurti. "Evaluation of Building Vulnerability to Earthquake Using Rapid Visual Screening (RVS) Method". Jurnal Teknik Sipil dan Perencanaan 23, nr 2 (28.10.2021): 114–24. http://dx.doi.org/10.15294/jtsp.v23i2.31399.
Pełny tekst źródłaGalloway, B. D., i H. J. Hare. "A review of post-earthquake building control policies with respect to the recovery of the Christchurch CBD". Bulletin of the New Zealand Society for Earthquake Engineering 45, nr 3 (30.09.2012): 105–16. http://dx.doi.org/10.5459/bnzsee.45.3.105-116.
Pełny tekst źródłaPang, Guo Li, Dan Qi Chen i Meng Huang. "Research on Building Earthquake Disaster Simulation". Advanced Materials Research 791-793 (wrzesień 2013): 1228–31. http://dx.doi.org/10.4028/www.scientific.net/amr.791-793.1228.
Pełny tekst źródłaIstiono, Heri, Eka Susanti, Jaka Propika i Azhar Yusuf Ramadhan. "Study comparison P-Delta Effect analysis depends on height variation of the building". Journal of Civil Engineering, Planning and Design 1, nr 1 (31.05.2022): 50–59. http://dx.doi.org/10.31284/j.jcepd.2022.v1i1.3055.
Pełny tekst źródłaAmbatkar, Ms Sayali. "Design and Analysis of Earthquake Resistant Building (Three Storeyed R.C.C. School Building) using STAAD.PRO". International Journal for Research in Applied Science and Engineering Technology 9, nr VI (30.06.2021): 2846–50. http://dx.doi.org/10.22214/ijraset.2021.35427.
Pełny tekst źródłaClifton, George Charles, i Gregory A. MacRae. "Lessons from the Field; Steel Structure Performance in Earthquakes in New Zealand from 2010 to 2016". Key Engineering Materials 763 (luty 2018): 61–71. http://dx.doi.org/10.4028/www.scientific.net/kem.763.61.
Pełny tekst źródłaMaison, Bruce F., Kazuhiko Kasai i Yoji Ooki. "Relative Performance of Kobe and Northridge WSMF Buildings". Earthquake Spectra 22, nr 4 (listopad 2006): 1081–101. http://dx.doi.org/10.1193/1.2359743.
Pełny tekst źródłaPAMUNGKAS, Adjie, Kesumaning Dyah LARASATI i Data IRANATA. "Architectural and Structural Requirements on Building Permits to Reduce Earthquake Risk. The Case of Surabaya, Indonesia". Journal of Settlements and Spatial Planning 12, nr 2 (26.12.2021): 107–18. http://dx.doi.org/10.24193/jssp.2021.2.04.
Pełny tekst źródłaRozprawy doktorskie na temat "Building- Earthquake"
Ito, Eri. "Integrated Earthquake Risk Evaluation for Mega-Thrust Earthquakes". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263356.
Pełny tekst źródłaSalman, Firas, i Mouhammed Hussain. "Earthquake Resistant Wooden House". Thesis, Linnaeus University, School of Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-5908.
Pełny tekst źródłaWood-stud shear walls are commonly used to provide lateral stability against horizontal forces in wood houses. Therefore, accurate predictions of the deformation properties of shear walls are necessary in order to improve the design of wood frame houses against earthquake loading. The aim of this thesis is to increase damping capacity of wood-stud shear walls and hence improve wood frame houses resistance against earthquake.
The starting point has been the laboratory experiments of nail joint’s deformation properties. Purpose of the experiments was to determine material properties of a nail joint. The material properties have later been used as material input data in the finite element (FE) model of wood-stud shear wall elements under alternating lateral loading. FE results have shown that wood-stud shear wall element’s damping capacity is mainly dependent on nail joints properties, number of nail joints, wall dimension and the use of middle studs.
Skjuvväggar av trä används ofta för att ge stabilitet åt horisontalbelastade träshustommar. Därför är kunskaper om skjuvväggars deformationsegenskaper nödvändiga för att kunna förbättra utformningen av trästommar utsatta för jordbävningslaster. Syftet med detta examenarbete är att visa på olika sätt som ökar skjuvväggars absorberande energi eller dämpningskapacitet och som därigenom ger möjligheter att förbättra trästommars motstånd mot jordbävningslaster.
Utgångspunkten har varit laboratorieexperimenten avseende spikförbandens deformationsegenskaper. Syftet med experimenten var att bestämma materialegenskaper för två olika spikförband. Materialsambanden användes därefter som indata i finita element (FE) modeller av skjuvväggselement utsatta för växlande sidobelastning. FE resultaten har visat att skjuvväggars totala dämpningskapacitet beror i huvudsak på spikförbandets materialegenskaper, antal spikförband, väggdimensionen och användningen av mellanreglar.
McHattie, Samuel Alexander. "Seismic Response of the UC Physics Building in the Canterbury Earthquakes". Thesis, University of Canterbury. Civil and Natural Resource Engineering, 2013. http://hdl.handle.net/10092/8801.
Pełny tekst źródłaKoc, Ersan. "Commitment Building For Earthquake Risk Management: Reconciling". Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612619/index.pdf.
Pełny tekst źródłanatural events&rdquo
which are out of human control. In fact, the sociopolitical structure is the main cause of earth tremors which turn into disasters. What is notable and striking is that, because of institutional and social vulnerabilities and little or misguided efforts for disaster loss mitigation, natural events may turn into disasters resulting negative and devastating consequences. Institutional vulnerabilities connote a lack of local administrations&rsquo
capacity for disaster mitigation planning, furthermore awareness for accreting local stakeholders for disaster loss reduction. Social vulnerabilities, refers to miss-knowledge and lack of awareness for disasters in the society. In Turkey, it is hard to say that there has never been efforts for disaster loss reduction, whereas
the main focus of the state agencies has been on post-disaster emergency relief, literally wound healing for decades. Generally speaking, localities which experience a disaster may encounter significant losses in development, hence a significant decrease in local capacities which takes enormous resources to restore. The housing stock and urban fabric, which inherit an historical background weaved by missguided disaster policy that only focus on post-disaster emergency relief phase, pictures the extent of the problem in Turkey. In addition, both &ldquo
institutional errors which lead to underachievement in disaster policy and practice&rdquo
and &ldquo
opportunities for building robust and resilient forms of institutions&rdquo
come into local agenda. Errors, which might have been altered by long term and comprehensive modes of local planning for disasters, may lead to underachievement by local agents. To achieve such a model, we are in need to carry out qualitative and quantitative data collecting and analyzing techniques in different phases. The two analysis techniques are in-depth interviews (IDI) and drawing Concept Maps that will be conducted in the analyses process with local respondents selected by snowball technique.
Vitoontus, Soravit. "Risk assessment of building inventories exposed to large scale natural hazards". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43676.
Pełny tekst źródłaMaples, Kenneth. "Optimal Control of a Building During an Earthquake". Scholarship @ Claremont, 2006. https://scholarship.claremont.edu/hmc_theses/184.
Pełny tekst źródłaHill, John C. "Building in the earthquake zone : American antifoundational theory". Thesis, Lancaster University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261013.
Pełny tekst źródłaArbabian, H. "Changes in building construction in an earthquake country". Thesis, University of Manchester, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.532983.
Pełny tekst źródłaSanchez-Silva, Mauricio. "A systems approach to earthquake vulnerability assessment". Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294584.
Pełny tekst źródłaKim, Jin Kyung. "A Conceptual Framework for Assessing Post-Earthquake Fire Performance of Buildings". Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-theses/306.
Pełny tekst źródłaKsiążki na temat "Building- Earthquake"
Çelebi, Mehmet. Building safer structures. Menlo Park, CA: U.S. Geological Survey, 1996.
Znajdź pełny tekst źródłaÇelebi, Mehmet. Building safer structures. Menlo Park, CA: U.S. Geological Survey, 1996.
Znajdź pełny tekst źródłaFisher, D. Joseph. Earthquake: A team-building simulation. AnnArbor, Mich: Orion International, 1990.
Znajdź pełny tekst źródłaFisher, D. Joseph. Earthquake: A team-building simulation. Ann Arbor, Mich: Orion International, 1990.
Znajdź pełny tekst źródła(Japan), Kensetsushō Kenchiku Kenkyūjo, red. A survey report for building damages due to the 1995 Hyogo-ken Nanbu earthquake. [Tokyo]: Building Research Institute, Ministry of Construction, 1996.
Znajdź pełny tekst źródłaPacific Conference on Earthquake Engineering (1987 Wairakei, N.Z.). Proceedings: Pacific Conference on Earthquake Engineering, Wairakei, New Zealand, 5-8 August 1987. [Wellington]: New Zealand National Society for Earthquake Engineering, 1987.
Znajdź pełny tekst źródłaEarthquake resistant building design and construction. Wyd. 3. New York: Elsevier, 1987.
Znajdź pełny tekst źródłaGreenn i Norman E. Green. Earthquake resistant building design and construction. New York: Van Nostrand Reinhold Company, 1997.
Znajdź pełny tekst źródłaBallast, David Kent. Advances in seismic building design. Monticello, Ill., USA: Vance Bibliographies, 1988.
Znajdź pełny tekst źródłaArya, Anand S. Earthquake disaster reduction: Masonry building, design, and construction. New Delhi: National Institute of Disaster Management in association with KW Publishers, 2007.
Znajdź pełny tekst źródłaCzęści książek na temat "Building- Earthquake"
Matsumoto, H., K. Ariizumi, K. Yamanouchi, H. Kuniyoshi, O. Chiba i M. Watakabe. "Earthquake observation of deeply embedded building structure". W Earthquake Engineering, redaktorzy Shamim A. Sheikh i S. M. Uzumeri, 421–28. Toronto: University of Toronto Press, 1991. http://dx.doi.org/10.3138/9781487583217-054.
Pełny tekst źródłaIlki, A., O. F. Halici, M. Comert i C. Demir. "The Modified Post-earthquake Damage Assessment Methodology for TCIP (TCIP-DAM-2020)". W Springer Tracts in Civil Engineering, 85–107. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68813-4_5.
Pełny tekst źródłaGülkan, P., i Robert K. Reitherman. "Building Codes and Standards". W Encyclopedia of Earthquake Engineering, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36197-5_393-1.
Pełny tekst źródłaGülkan, P., i Robert K. Reitherman. "Building Codes and Standards". W Encyclopedia of Earthquake Engineering, 338–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_393.
Pełny tekst źródłaPaz, Mario. "Seismic resistant design of building: multinational codes and programs". W Earthquake Engineering, redaktorzy Shamim A. Sheikh i S. M. Uzumeri, 759–66. Toronto: University of Toronto Press, 1991. http://dx.doi.org/10.3138/9781487583217-096.
Pełny tekst źródłaTso, W. K. "Overview of seismic provision changes in national building code of Canada, 1990". W Earthquake Engineering, redaktorzy Shamim A. Sheikh i S. M. Uzumeri, 743–50. Toronto: University of Toronto Press, 1991. http://dx.doi.org/10.3138/9781487583217-094.
Pełny tekst źródłaSucuoğlu, Halûk, i Sinan Akkar. "Response of Building Frames to Earthquake Ground Motions". W Basic Earthquake Engineering, 145–201. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01026-7_5.
Pełny tekst źródłaDashti, Shideh. "Liquefaction: Performance of Building Foundation Systems". W Encyclopedia of Earthquake Engineering, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36197-5_16-1.
Pełny tekst źródłaVarley, Nick. "Rockfall Seismicity Accompanying Dome-Building Eruptions". W Encyclopedia of Earthquake Engineering, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36197-5_48-1.
Pełny tekst źródłaDashti, Shideh. "Liquefaction: Performance of Building Foundation Systems". W Encyclopedia of Earthquake Engineering, 1329–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Building- Earthquake"
Elnashai, Amr, i Do-Soo Moon. "COUPLING OF HIGHRISE BUILDING EARTHQUAKE RETROFIT AND BUILDING INFORMATION MANAGEMENT (BIM) SYSTEM". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.71.
Pełny tekst źródłaSalvatori, Antonello. "BEHAVIOUR OF SEISMIC ISOLATED BUILDING DURING CENTRAL ITALY 2016 – 2017 EARTHQUAKES". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.129.
Pełny tekst źródłaBrzev, Svetlana, Predrag Blagojević i Radovan Cvetković. "SEISMIC RETROFITTING OF POST-WWII MID-RISE UNREINFORCED MASONRY RESIDENTIAL BUILDINGS IN THE BALKANS". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.90.
Pełny tekst źródłaShala, Alush, i Jelena Bleiziffer. "IMPROVEMENT OF BUILDING’S WALLS BEARING CAPACITY AFTER AN EARTHQUAKE". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.89.
Pełny tekst źródłaGjorgjiev, Igor, Aleksandar Zhurovski i Borjan Petreski. "THE INFLUENCE OF SECTION SIDES RATIO OF RECTANGULAR COLUMN ON SEISMIC RESPONSE OF RC BUILDING". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.20.
Pełny tekst źródłaBrzev, Svetlana, Jovana Borozan, Marko Marinković, Marijana Hadzima-Nyarko, Nikola Blagojević, Milica Petrović, Veljko Koković, Borko Bulajić i Božidar Stojadinović. "CLASSIFICATION OF RESIDENTIAL BUILDING STOCK IN SERBIA". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.100.
Pełny tekst źródłaMarshall, Justin D., Jim C. Barnes, Nathan C. Gould, Kishor Jaiswal, Bret Lizundia, David B. Swanson i Fred Turner. "Post-Earthquake Building Safety Assessments for the Canterbury Earthquakes". W Structures Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412367.094.
Pełny tekst źródłaScaini, Chiara, Bojana Petrovic, Maria Rosaria Gallipoli, Giuseppe Calamita, Nicola Tragni, Carla Barnaba, Marco Vona i Stefano Parolai. "FRIBAS: A PARAMETRIC DATABASE OF BUILDING AND SOIL FEATURES INCLUDING THE FUNDAMENTAL FREQUENCY OF RESONANCE". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.57.
Pełny tekst źródłaSalic Makreska, Radmila, Katerina Drogreska, Cvetan Sinadinovski, Zabedin Neziri, Ljubco Jovanov, Zoran Milutinovic, Lazo Pekevski, Jasmina Najdovska, Dragana Chernih Atanasovska i Daniel Tomic. "IMPACT OF MODERATE SIZE EARTHQUAKES THROUGH SKOPJE 2016 AND ZAGREB 2020 CASE STUDIES". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.10.
Pełny tekst źródłaDuvnjak, Ivan, Marina Frančić Smrkić, Domagoj Damjanović i Karla Grgić. "EXPERIMENTAL AND NUMERICAL ANALYSIS OF DAMAGED MASONRY BUILDING". W 2nd Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, 2023. http://dx.doi.org/10.5592/co/2crocee.2023.40.
Pełny tekst źródłaRaporty organizacyjne na temat "Building- Earthquake"
Dillon, Michael B., i Staci R. Kane. Estimating Fallout Building Attributes from Architectural Features and Global Earthquake Model (GEM) Building Descriptions. Office of Scientific and Technical Information (OSTI), marzec 2017. http://dx.doi.org/10.2172/1361602.
Pełny tekst źródłaRutherford, J., i J. F. Cassidy. Comparing felt intensity patterns for crustal earthquakes in the Cascadia and Chilean subduction zones, offshore British Columbia, United States, and Chile. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330475.
Pełny tekst źródłaVail, Kylin, Bret Lizundia, David Welch i Evan Reis. Earthquake Damage Workshop (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/plbd5536.
Pełny tekst źródłaCatlin, Ann Christine, i Santiago Pujol. NIST Disaster and Failure Studies Data Repository: The Chile Earthquake Database – Ground Motion and Building Performance Data from the 2010 Chile Earthquake – User Manual. National Institute of Standards and Technology, grudzień 2015. http://dx.doi.org/10.6028/nist.gcr.15-1008.
Pełny tekst źródłaArchuleta, R., F. Bonilla, M. Doroudian, A. Elgamal i F. Hueze. Strong Earthquake Motion Estimates for the UCSB Campus, and Related Response of the Engineering 1 Building. Office of Scientific and Technical Information (OSTI), czerwiec 2000. http://dx.doi.org/10.2172/791973.
Pełny tekst źródłaMETCALF, I. L. Assessment of Structural Resistance of building 4862 to Earthquake and Tornado Forces [SEC 1 and 2]. Office of Scientific and Technical Information (OSTI), grudzień 1999. http://dx.doi.org/10.2172/798807.
Pełny tekst źródłaWelch, David, i Gregory Deierlein. Technical Background Report for Structural Analysis and Performance Assessment (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/yyqh3072.
Pełny tekst źródłaHobbs, T. E., J. M. Journeay, A. S. Rao, L. Martins, P. LeSueur, M. Kolaj, M. Simionato i in. Scientific basis of Canada's first public national seismic risk model. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330927.
Pełny tekst źródłaVisser, R., H. Kao, R. M. H. Dokht, A. B. Mahani i S. Venables. A comprehensive earthquake catalogue for northeastern British Columbia: the northern Montney trend from 2017 to 2020 and the Kiskatinaw Seismic Monitoring and Mitigation Area from 2019 to 2020. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329078.
Pełny tekst źródłaMosalam, Khalid, i Amarnath Kasalanati. PEER Activities 2018—2020. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, listopad 2020. http://dx.doi.org/10.55461/pwvt2699.
Pełny tekst źródła