Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Buckled Thin Film Transistor.

Artykuły w czasopismach na temat „Buckled Thin Film Transistor”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Buckled Thin Film Transistor”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Cantarella, Giuseppe, Christian Vogt, Raoul Hopf, Niko Münzenrieder, Panagiotis Andrianakis, Luisa Petti, Alwin Daus i in. "Buckled Thin-Film Transistors and Circuits on Soft Elastomers for Stretchable Electronics". ACS Applied Materials & Interfaces 9, nr 34 (21.08.2017): 28750–57. http://dx.doi.org/10.1021/acsami.7b08153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Aoyama, Takashi, Genshiro Kawachi, Yasuhiro Mochizuki i Takaya Suzuki. "Effect of Ion Doping Process on Thin-Film Transistor Characteristics Using a Bucket-Type Ion Source and XeCl Excimer Laser Annealing". Japanese Journal of Applied Physics 31, Part 1, No. 4 (15.04.1992): 1012–15. http://dx.doi.org/10.1143/jjap.31.1012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Horng. "Thin Film Transistor". Crystals 9, nr 8 (9.08.2019): 415. http://dx.doi.org/10.3390/cryst9080415.

Pełny tekst źródła
Streszczenie:
The special issue is "Thin Film Transistor". There are eight contributed papers. They focus on organic thin film transistors, fluorinated oligothiophenes transistors, surface treated or hydrogen effect on oxide-semiconductor-based thin film transistors, and their corresponding application in flat panel displays and optical detecting. The present special issue on “Thin Film Transistor” can be considered as a status report reviewing the progress that has been made recently on thin film transistor technology. These papers can provide the readers with more research information and corresponding application potential about Thin Film Transistors.
Style APA, Harvard, Vancouver, ISO itp.
4

Choi, Kwangsoo, i Masakiyo Matsumura. "Semi-Insulating Polysilicon Thin-Film Transistor: A Proposed Thin-Film Transistor". Japanese Journal of Applied Physics 34, Part 1, No. 7A (15.07.1995): 3497–99. http://dx.doi.org/10.1143/jjap.34.3497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

YASE, Kiyoshi. "Organic Thin Film Transistor". Kobunshi 53, nr 2 (2004): 85–88. http://dx.doi.org/10.1295/kobunshi.53.85.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

IÑIGUEZ, BENJAMIN, TOR A. FJELDLY i MICHAEL S. SHUR. "THIN-FILM TRANSISTOR MODELING". International Journal of High Speed Electronics and Systems 09, nr 03 (wrzesień 1998): 703–23. http://dx.doi.org/10.1142/s0129156498000300.

Pełny tekst źródła
Streszczenie:
We review recent physics-based, analytical DC models for amorphous silicon (a-Si), polysilicon (poly-Si), and organic thin film transistors (TFTs), developed for the design of novel ultra high-resolution, large area displays using advanced short-channel TFTs. In particular, we emphasize the modeling issues related to the main short-channel effects, such as self-heating (a-Si TFTs) and kink effect (a-Si and poly-Si TFTs), which are present in modern TFTs. The models have been proved to accurately reproduce the DC characteristics of a-Si:H with gate lengths down to 4 μm and poly-Si TFTs with gate lengths down to 2 μm. Because the scalability of the models and the use of continuous expressions for describing the characteristics in all operating regimes, the models are suitable for implementation in circuit simulators such as SPICE.
Style APA, Harvard, Vancouver, ISO itp.
7

Pavelko, Vitalijs. "Behavior of Thin-Film-Type Delamination of Layered Composite in Post-Buckling". Advanced Materials Research 774-776 (wrzesień 2013): 1312–21. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.1312.

Pełny tekst źródła
Streszczenie:
A revision of the basic assumptions those are usually used in the analysis of stability of thin delaminated layer and delamination propagation in a compressed composite is presented in this paper. For this purpose, the theory of flexible elastic plates with large displacements was used. As a result the compressive force and the total longitudinal strain of sub-laminate are expressed in terms of complete elliptic integrals, which uniquely identify the buckled shape of sub-laminate, the effect of buckling on the compression strain and increment of the compressive force in the buckled state. Stress and strain, as well as the strength of the buckled sub-laminate in the dangerous cross-section were also analyzed. The results of the general analysis of delamination propagation and its compression-bending destruction in the buckled state allow to define the basic regularities of the damage behavior of compressed layered composite.
Style APA, Harvard, Vancouver, ISO itp.
8

Oh, Teresa. "Low Power Thin Film Transistor". Science of Advanced Materials 9, nr 11 (1.11.2017): 2013–18. http://dx.doi.org/10.1166/sam.2017.3204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lifshitz, N., S. Luryi, M. R. Pinto i C. S. Rafferty. "Active-gate thin-film transistor". IEEE Electron Device Letters 14, nr 8 (sierpień 1993): 394–95. http://dx.doi.org/10.1109/55.225590.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Nomura, Kenji, Toshio Kamiya i Hideo Hosono. "Ambipolar Oxide Thin-Film Transistor". Advanced Materials 23, nr 30 (1.07.2011): 3431–34. http://dx.doi.org/10.1002/adma.201101410.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Kimura, Mutsumi, Takehiro Shima i Takehiko Yamashita. "Artificial Retina using Thin-Film Photodiode and Thin-Film Transistor". ECS Transactions 3, nr 8 (21.12.2019): 325–31. http://dx.doi.org/10.1149/1.2356370.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Hamilton, M. C., i J. Kanicki. "Organic Polymer Thin-Film Transistor Photosensors". IEEE Journal of Selected Topics in Quantum Electronics 10, nr 4 (lipiec 2004): 840–48. http://dx.doi.org/10.1109/jstqe.2004.833972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Bof Bufon, C. C., i T. Heinzel. "Polypyrrole thin-film field-effect transistor". Applied Physics Letters 89, nr 1 (3.07.2006): 012104. http://dx.doi.org/10.1063/1.2219375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Prins, M. W. J., K. ‐O Grosse‐Holz, G. Müller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening i R. M. Wolf. "A ferroelectric transparent thin‐film transistor". Applied Physics Letters 68, nr 25 (17.06.1996): 3650–52. http://dx.doi.org/10.1063/1.115759.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Klauk, H., D. J. Gundlach i T. N. Jackson. "Fast organic thin-film transistor circuits". IEEE Electron Device Letters 20, nr 6 (czerwiec 1999): 289–91. http://dx.doi.org/10.1109/55.767101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kim, Gun Hee, Hyun Soo Kim, Hyun Soo Shin, Byun Du Ahn, Kyung Ho Kim i Hyun Jae Kim. "Inkjet-printed InGaZnO thin film transistor". Thin Solid Films 517, nr 14 (maj 2009): 4007–10. http://dx.doi.org/10.1016/j.tsf.2009.01.151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Nakashima, Akihiro, Yuki Sagawa i Mutsumi Kimura. "Temperature Sensor Using Thin-Film Transistor". IEEE Sensors Journal 11, nr 4 (kwiecień 2011): 995–98. http://dx.doi.org/10.1109/jsen.2010.2060720.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Liu, Po-Tsun, Yi-Teh Chou, Li-Feng Teng, Fu-Hai Li i Han-Ping Shieh. "Nitrogenated amorphous InGaZnO thin film transistor". Applied Physics Letters 98, nr 5 (31.01.2011): 052102. http://dx.doi.org/10.1063/1.3551537.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Stewart, Kevin A., i John F. Wager. "Thin-film transistor mobility limits considerations". Journal of the Society for Information Display 24, nr 6 (czerwiec 2016): 386–93. http://dx.doi.org/10.1002/jsid.452.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kim, Ji-Won, Jong-Keun Lee, Young Woong Kim, Sung-Kyu Hong, Yong-Young Noh i Young Soon Kim. "Printable Indium Oxide Thin-Film Transistor". NIP & Digital Fabrication Conference 26, nr 1 (1.01.2010): 737–39. http://dx.doi.org/10.2352/issn.2169-4451.2010.26.1.art00094_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Winton, Brad, Mihail Ionescu i Shi Xue Dou. "The control of time-dependent buckling patterns in thin confined elastomer film". Journal of Materials Research 25, nr 10 (październik 2010): 1929–35. http://dx.doi.org/10.1557/jmr.2010.0263.

Pełny tekst źródła
Streszczenie:
Low energy metal ion implantation has been used to combine an easy “bottom-up” way of creating and tuning different topographic structures on submicron to micrometer scales with the embedding of a metallic element-rich functionalized layer at the surface for a variety of scientific and technological applications. The self-organizing and complex patterns of functionalized topographic structures are highly dependent on the implanted metal ion species, variations in the geometric confinement of the buckled areas on the larger unmodified elastomer film, and the boundary conditions of the buckled regions. Systematic investigations of these dependencies have been carried out via optical and atomic force microscopy, and confirmed with cross-sectional transmission electron microscopy.
Style APA, Harvard, Vancouver, ISO itp.
22

Fan, Xuanqing, Yi Wang, Yuhang Li i Haoran Fu. "Vibration Analysis of Post-Buckled Thin Film on Compliant Substrates". Sensors 20, nr 18 (22.09.2020): 5425. http://dx.doi.org/10.3390/s20185425.

Pełny tekst źródła
Streszczenie:
Buckling stability of thin films on compliant substrates is universal and essential in stretchable electronics. The dynamic behaviors of this special system are unavoidable when the stretchable electronics are in real applications. In this paper, an analytical model is established to investigate the vibration of post-buckled thin films on a compliant substrate by accounting for the substrate as an elastic foundation. The analytical predictions of natural frequencies and vibration modes of the system are systematically investigated. The results may serve as guidance for the dynamic design of the thin film on compliant substrates to avoid resonance in the noise environment.
Style APA, Harvard, Vancouver, ISO itp.
23

Krammer, Markus, James Borchert, Andreas Petritz, Esther Karner-Petritz, Gerburg Schider, Barbara Stadlober, Hagen Klauk i Karin Zojer. "Critical Evaluation of Organic Thin-Film Transistor Models". Crystals 9, nr 2 (6.02.2019): 85. http://dx.doi.org/10.3390/cryst9020085.

Pełny tekst źródła
Streszczenie:
The thin-film transistor (TFT) is a popular tool for determining the charge-carrier mobility in semiconductors, as the mobility (and other transistor parameters, such as the contact resistances) can be conveniently extracted from its measured current-voltage characteristics. However, the accuracy of the extracted parameters is quite limited, because their values depend on the extraction technique and on the validity of the underlying transistor model. We propose here a new approach for validating to what extent a chosen transistor model is able to predict correctly the transistor operation. In the two-step fitting approach we have developed, we analyze the measured current-voltage characteristics of a series of TFTs with different channel lengths. In the first step, the transistor parameters are extracted from each individual transistor by fitting the output and transfer characteristics to the transistor model. In the second step, we check whether the channel-length dependence of the extracted parameters is consistent with the underlying model. We present results obtained from organic TFTs fabricated in two different laboratories using two different device architectures, three different organic semiconductors and five different materials combinations for the source and drain contacts. For each set of TFTs, our approach reveals that the state-of-the-art transistor models fail to reproduce correctly the channel-length-dependence of the transistor parameters. Our approach suggests that conventional transistor models require improvements in terms of the charge-carrier-density dependence of the mobility and/or in terms of the consideration of uncompensated charges in the carrier-accumulation channel.
Style APA, Harvard, Vancouver, ISO itp.
24

Won, Do Young, Manh-Cuong Nguyen, Hyun Min Kim, Nam Kyun Tak, Jin Hyung Choi, Rino Choi, Jae-Min Myoung i Ho Gyu Yoon. "Residual Image Reduction Using Electric Field Shield Metal in Plastic Organic Light-Emitting Diode Display". Journal of Nanoscience and Nanotechnology 20, nr 11 (1.11.2020): 6884–89. http://dx.doi.org/10.1166/jnn.2020.18806.

Pełny tekst źródła
Streszczenie:
A plastic organic light-emitting diode display is a device that emits light in an organic layer in proportion to the amount of current applied from a thin film transistor, which constitutes a pixel. However, it was confirmed that the residual image was shown by the operation of the thin film transistor. To suppress residual image, the effect of electric field was studied in operation of a-IGZO thin film transistor. The a-IGZO thin film transistor, in which a polyimide film was used as a substrate, was applied as a driving thin film transistor for pixel circuits in a plastic organic light-emitting diode display, and the effect of the electric field behavior inside the film on residual images was studied. Residual images were strongly connection with the electric field distribution characteristics inside the polyimide substrate, and they were reduced by introducing an electric field shield metal layer in the a-IGZO thin film transistor. The correlation between residual image generation and the operation of the a-IGZO thin film transistor was further explained through technology computer-aided design simulation (Silvaco Group Inc.).
Style APA, Harvard, Vancouver, ISO itp.
25

Seok, Seonho. "FEM Analysis of Buckled Dielectric Thin-Film Packaging Based on 3D Direct Numerical Simulation". Micromachines 14, nr 7 (26.06.2023): 1312. http://dx.doi.org/10.3390/mi14071312.

Pełny tekst źródła
Streszczenie:
This paper presents a 3D direct numerical simulation of buckled thin-film packaging based on transferred elastic thin-film wrinkling bonded on a compliant polymer ring. The mode change of the fabricated thin-film cap is found by measuring the thin-film cap shape at different times after Si substrate debonding. The conventional linear and nonlinear buckling simulations are not adequate to understand the behavior of the thin-film buckling mechanism creating such packaging cap mode change. Direct buckling simulation is recently reported as an easy and useful numerical wrinkling simulation method. A novel 3D FEM model of a thin-film package suitable for direct 3D buckling simulation is built to reduce the mode mixture between different buckling modes. Buckling modes of the packaging cap are investigated in terms of elastic moduli of package materials and applied strain due to thermal expansion coefficient difference. Based on the simulation results, it is found that there are two main modes in the fabricated thin-film buckling package determining the shape of the transferred thin-film packaging cover depending on the elasticity ratio between the cap and sealing ring materials. The mode shift from wrinkling cap mode to out-of-plane cap mode due to applied strain along a polymeric sealing ring is found.
Style APA, Harvard, Vancouver, ISO itp.
26

Kanoh, Hiroshi, i Masakiyo Matsumura. "Thermal-CVD Amorphous-Silicon Thin-Film Transistor". IEEJ Transactions on Fundamentals and Materials 110, nr 10 (1990): 667–69. http://dx.doi.org/10.1541/ieejfms1990.110.10_667.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Elkington, Daniel, Nathan Cooling, Warwick Belcher, Paul Dastoor i Xiaojing Zhou. "Organic Thin-Film Transistor (OTFT)-Based Sensors". Electronics 3, nr 2 (8.04.2014): 234–54. http://dx.doi.org/10.3390/electronics3020234.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Ichikawa, Kazunori, Mami Fujii, Yukiharu Uraoka, Prakaipetch Punchaipetch, Hiroshi Yano, Tomoaki Hatayama, Takashi Fuyuki i Ichiro Yamashita. "Nonvolatile Thin Film Transistor Memory with Ferritin". Journal of the Korean Physical Society 54, nr 9(5) (15.01.2009): 554–57. http://dx.doi.org/10.3938/jkps.54.554.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Higashi, H., M. Nakano, K. Kudo, Y. Fujita, S. Yamada, T. Kanashima, I. Tsunoda, H. Nakashima i K. Hamaya. "A crystalline germanium flexible thin-film transistor". Applied Physics Letters 111, nr 22 (27.11.2017): 222105. http://dx.doi.org/10.1063/1.5007828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Clarisse, C., M. T. Riou, M. Gauneau i M. le Contellec. "Field-effect transistor with diphthalocyanine thin film". Electronics Letters 24, nr 11 (26.05.1988): 674–75. http://dx.doi.org/10.1049/el:19880456.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kumar, K. P. A., J. K. O. Sin, Man Wong i V. M. C. Poon. "A Conductivity Modulated Polysilicon Thin-Film Transistor". IEEE Electron Device Letters 16, nr 11 (listopad 1995): 521–23. http://dx.doi.org/10.1109/55.468287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Maeda, Hiroki. "6.Thin Film Transistor Using Organic Semiconductor". Journal of The Institute of Image Information and Television Engineers 64, nr 9 (2010): 1320–22. http://dx.doi.org/10.3169/itej.64.1320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Afentakis, T., R. S. Sposili i A. Voutsas. "A Novel Agglomerated-Silicon Thin-Film Transistor". IEEE Electron Device Letters 31, nr 1 (styczeń 2010): 50–52. http://dx.doi.org/10.1109/led.2009.2035137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Ling Li, H. Marien, J. Genoe, M. Steyaert i P. Heremans. "Compact Model for Organic Thin-Film Transistor". IEEE Electron Device Letters 31, nr 3 (marzec 2010): 210–12. http://dx.doi.org/10.1109/led.2009.2039744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Street, R. A., W. S. Wong, T. Ng i R. Lujan. "Amorphous silicon thin film transistor image sensors". Philosophical Magazine 89, nr 28-30 (październik 2009): 2687–97. http://dx.doi.org/10.1080/14786430802709113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Cheon, Jun Hyuk, Seung Hyun Park, Moon Hyo Kang, Jin Jang, Sung Eun Ahn, Jeffrey Cites, Carlo Kosik Williams i Chuan Che Wang. "Ultrathin Si Thin-Film Transistor on Glass". IEEE Electron Device Letters 30, nr 2 (luty 2009): 145–47. http://dx.doi.org/10.1109/led.2008.2010065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Colgan, E. G., R. J. Polastre, M. Takeichi i R. L. Wisnieff. "Thin-film-transistor process-characterization test structures". IBM Journal of Research and Development 42, nr 3.4 (maj 1998): 481–90. http://dx.doi.org/10.1147/rd.423.0481.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Mourey, Devin A., Dalong A. Zhao, Jie Sun i Thomas N. Jackson. "Fast PEALD ZnO Thin-Film Transistor Circuits". IEEE Transactions on Electron Devices 57, nr 2 (luty 2010): 530–34. http://dx.doi.org/10.1109/ted.2009.2037178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Yoo, Geonwook, Tze-ching Fung, Daniela Radtke, Marko Stumpf, Uwe Zeitner i Jerzy Kanicki. "Hemispherical thin-film transistor passive pixel sensors". Sensors and Actuators A: Physical 158, nr 2 (marzec 2010): 280–83. http://dx.doi.org/10.1016/j.sna.2009.11.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Sameshima, T. "Laser processing for thin film transistor applications". Materials Science and Engineering: B 45, nr 1-3 (marzec 1997): 186–93. http://dx.doi.org/10.1016/s0921-5107(96)01886-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Sun, Kai, Ioannis Zeimpekis, Marta Lombardini, Nonofo M. Jack Ditshego, Stuart J. Pearce, Kian S. Kiang, Owain Thomas i in. "Three-Mask Polysilicon Thin-Film Transistor Biosensor". IEEE Transactions on Electron Devices 61, nr 6 (czerwiec 2014): 2170–76. http://dx.doi.org/10.1109/ted.2014.2315669.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Dutta, Soumya, i Ananth Dodabalapur. "Zinc tin oxide thin film transistor sensor". Sensors and Actuators B: Chemical 143, nr 1 (4.12.2009): 50–55. http://dx.doi.org/10.1016/j.snb.2009.07.056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Koezuka, H., A. Tsumura i T. Ando. "Field-effect transistor with polythiophene thin film". Synthetic Metals 18, nr 1-3 (luty 1987): 699–704. http://dx.doi.org/10.1016/0379-6779(87)90964-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Van Calster, A. "Fabrication processes for the thin film transistor". Thin Solid Films 126, nr 3-4 (kwiecień 1985): 219–25. http://dx.doi.org/10.1016/0040-6090(85)90314-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Hwang, J. D., Y. K. Fang i T. Y. Tsai. "A vertical submicron SiC thin film transistor". Solid-State Electronics 38, nr 2 (luty 1995): 275–78. http://dx.doi.org/10.1016/0038-1101(94)00120-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Park, Jong-Won, Dong Hee Lee, June Chen, Man-Hun Bae, Moon-Sung Kang, Yun-Hi Kim, Seungmoon Pyo, Mi Hye Yi i Soon-Ki Kwon. "Organic thin-film transistor based on dibenzothiophene". Current Applied Physics 10, nr 4 (listopad 2010): e152-e156. http://dx.doi.org/10.1016/j.cap.2010.03.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Hunter, Joe S. "Multifunction sensor using thin film transistor transducers". Journal of the Acoustical Society of America 77, nr 5 (maj 1985): 1978. http://dx.doi.org/10.1121/1.391784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Wager, John F. "(Invited) Thin-Film Transistor Accumulation-Mode Modeling". ECS Meeting Abstracts MA2022-02, nr 35 (9.10.2022): 1257. http://dx.doi.org/10.1149/ma2022-02351257mtgabs.

Pełny tekst źródła
Streszczenie:
Analytical equations are developed for electrostatic assessment of accumulation-mode thin-film transistors (TFTs) so that potential, electric field, and accumulation layer free electron concentration profiles may be generated. Additionally, equations are derived for plotting TFT trap density versus surface potential, based on accurate extraction of the channel mobility as a function of gate voltage. A key factor in formulating these device physics equations is distinguishing between a ‘long-base’ or ‘short-base’ channel thickness. A ‘long-base’ (‘short-base’) channel thickness is defined to occur when the accumulation layer thickness (as calculated in the normal manner) is less than (greater than) the physical thickness of the channel layer. The electrostatic equations derived herein are applied to the analysis of two amorphous oxide semiconductor (AOS) TFTs with differing channel layers, i.e., a 40 nm amorphous indium gallium zinc oxide (a-IGZO) or a 7 nm amorphous indium zinc oxide (a-IZO). Application of these equations suggests that optimal TFT performance is obtained when the channel layer thickness is chosen to be similar to its Debye length. Estimated trap densities of these two AOS TFTs are found to be quite similar. Therefore, the superior mobility performance of the a-IZO TFT compared to the a-IGZO TFT is ascribed to the smaller effective mass of a-IZO, assuming that the maximum (no trapping) drift mobility in the channel is established by the thermally-limited diffusive mobility.
Style APA, Harvard, Vancouver, ISO itp.
49

Aguilhon, L., J.-P. Bourgoin, A. Barraud i P. Hesto. "Thin film organic channel field effect transistor". Synthetic Metals 71, nr 1-3 (kwiecień 1995): 1971–74. http://dx.doi.org/10.1016/0379-6779(94)03130-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Anthopoulos, Thomas D., Yong‐Young Noh i Oana D. Jurchescu. "Emerging Thin‐Film Transistor Technologies and Applications". Advanced Functional Materials 30, nr 20 (maj 2020): 2001678. http://dx.doi.org/10.1002/adfm.202001678.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii