Artykuły w czasopismach na temat „Brittle Metallic Glasses”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Brittle Metallic Glasses”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sun, Y. H. "Inverse ductile–brittle transition in metallic glasses?" Materials Science and Technology 31, no. 6 (2014): 635–50. http://dx.doi.org/10.1179/1743284714y.0000000684.
Pełny tekst źródłaZhao, J. X., R. T. Qu, F. F. Wu, et al. "Fracture mechanism of some brittle metallic glasses." Journal of Applied Physics 105, no. 10 (2009): 103519. http://dx.doi.org/10.1063/1.3129313.
Pełny tekst źródłaDing, Rui Xian, Sheng Zhong Kou, Jian Jun Fan, and Ye Jiang. "Effect of Raw Material Purity on Structure and Properties of Metallic Glasses." Materials Science Forum 1035 (June 22, 2021): 759–67. http://dx.doi.org/10.4028/www.scientific.net/msf.1035.759.
Pełny tekst źródłaLee, Min Ha, Joong Hwan Jun, and Jürgen Eckert. "Effect of Residual Stress on Mechanical Property of Monolithic Bulk Metallic Glass." Materials Science Forum 654-656 (June 2010): 1050–53. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1050.
Pełny tekst źródłaGuo, S. F., J. L. Qiu, P. Yu, S. H. Xie, and W. Chen. "Fe-based bulk metallic glasses: Brittle or ductile?" Applied Physics Letters 105, no. 16 (2014): 161901. http://dx.doi.org/10.1063/1.4899124.
Pełny tekst źródłaQiao, J. W., M. M. Meng, Z. H. Wang, et al. "Scattering mechanical performances for brittle bulk metallic glasses." AIP Advances 4, no. 11 (2014): 117107. http://dx.doi.org/10.1063/1.4901280.
Pełny tekst źródłaMurali, P., R. Narasimhan, T. F. Guo, Y. W. Zhang, and H. J. Gao. "Shear bands mediate cavitation in brittle metallic glasses." Scripta Materialia 68, no. 8 (2013): 567–70. http://dx.doi.org/10.1016/j.scriptamat.2012.11.038.
Pełny tekst źródłaYu, P., Y. H. Liu, G. Wang, H. Y. Bai, and W. H. Wang. "Enhance plasticity of bulk metallic glasses by geometric confinement." Journal of Materials Research 22, no. 9 (2007): 2384–88. http://dx.doi.org/10.1557/jmr.2007.0318.
Pełny tekst źródłaHofmann, Douglas C., and William L. Johnson. "Improving Ductility in Nanostructured Materials and Metallic Glasses: “Three Laws”." Materials Science Forum 633-634 (November 2009): 657–63. http://dx.doi.org/10.4028/www.scientific.net/msf.633-634.657.
Pełny tekst źródłaAkçay, F. A. "Structural Characteristic Length in Metallic Glasses." Journal of Mechanics 36, no. 2 (2020): 255–64. http://dx.doi.org/10.1017/jmech.2019.64.
Pełny tekst źródłaYang, Guan-Nan, Yang Shao, and Ke-Fu Yao. "Understanding the Fracture Behaviors of Metallic Glasses—An Overview." Applied Sciences 9, no. 20 (2019): 4277. http://dx.doi.org/10.3390/app9204277.
Pełny tekst źródłaHuang, X., Z. Ling, and L. H. Dai. "Ductile-to-brittle transition in spallation of metallic glasses." Journal of Applied Physics 116, no. 14 (2014): 143503. http://dx.doi.org/10.1063/1.4897552.
Pełny tekst źródłaPan, D. G., H. F. Zhang, A. M. Wang, Z. G. Wang, and Z. Q. Hu. "Fracture instability in brittle Mg-based bulk metallic glasses." Journal of Alloys and Compounds 438, no. 1-2 (2007): 145–49. http://dx.doi.org/10.1016/j.jallcom.2006.08.014.
Pełny tekst źródłaCHEN, Yan, and LanHong DAI. "Inherent parameters governing ductile-brittle transition in metallic glasses." SCIENTIA SINICA Physica, Mechanica & Astronomica 42, no. 6 (2012): 551–59. http://dx.doi.org/10.1360/132012-296.
Pełny tekst źródłaTo, Theany, Christian Gamst, Martin B. Østergaard, Lars R. Jensen, and Morten M. Smedskjaer. "Fracture energy of high-Poisson's ratio oxide glasses." Journal of Applied Physics 131, no. 24 (2022): 245105. http://dx.doi.org/10.1063/5.0096855.
Pełny tekst źródłaGu, X. J., S. Joseph Poon, and Gary J. Shiflet. "Mechanical properties of iron-based bulk metallic glasses." Journal of Materials Research 22, no. 2 (2007): 344–51. http://dx.doi.org/10.1557/jmr.2007.0036.
Pełny tekst źródłaZhu, Z. W., S. J. Zheng, H. F. Zhang, et al. "Plasticity of bulk metallic glasses improved by controlling the solidification condition." Journal of Materials Research 23, no. 4 (2008): 941–48. http://dx.doi.org/10.1557/jmr.2008.0127.
Pełny tekst źródłaLi, G., M. Q. Jiang, F. Jiang, L. He, and J. Sun. "Temperature-induced ductile-to-brittle transition of bulk metallic glasses." Applied Physics Letters 102, no. 17 (2013): 171901. http://dx.doi.org/10.1063/1.4803170.
Pełny tekst źródłaYang, H. W., M. J. Tan, R. D. Li, and J. Q. Wang. "Effect of Minor V Addition on Al88Y7Fe5 Amorphous Alloys." Applied Mechanics and Materials 302 (February 2013): 76–81. http://dx.doi.org/10.4028/www.scientific.net/amm.302.76.
Pełny tekst źródłaLiu, Y. H., G. Wang, M. X. Pan, P. Yu, D. Q. Zhao, and W. H. Wang. "Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity." Journal of Materials Research 22, no. 4 (2007): 869–75. http://dx.doi.org/10.1557/jmr.2007.0104.
Pełny tekst źródłaLagos, Miguel, and Raj Das. "Brittle and Ductile Character of Amorphous Solids." Advances in Applied Mathematics and Mechanics 8, no. 3 (2016): 485–98. http://dx.doi.org/10.4208/aamm.2013.m439.
Pełny tekst źródłaYang, W., Y. Zhao, L. Dou, et al. "Correlation between fractal dimension and strength of brittle bulk metallic glasses." Materials Science and Technology 30, no. 4 (2013): 447–50. http://dx.doi.org/10.1179/1743284713y.0000000374.
Pełny tekst źródłaZeng, F., M. Q. Jiang, and L. H. Dai. "Dilatancy induced ductile–brittle transition of shear band in metallic glasses." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2212 (2018): 20170836. http://dx.doi.org/10.1098/rspa.2017.0836.
Pełny tekst źródłaPan, D., H. Guo, W. Zhang, A. Inoue, and M. W. Chen. "Temperature-induced anomalous brittle-to-ductile transition of bulk metallic glasses." Applied Physics Letters 99, no. 24 (2011): 241907. http://dx.doi.org/10.1063/1.3669508.
Pełny tekst źródłaKhusnutdinoff, Ramil M., and Anatolii V. Mokshin. "Elastic Properties and Glass Forming Ability of the Zr50Cu40Ag10 Metallic Alloy." Solid State Phenomena 310 (September 2020): 145–49. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.145.
Pełny tekst źródłaZhang, Z. F., J. Eckert, and L. Schultz. "Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass." Journal of Materials Research 18, no. 2 (2003): 456–65. http://dx.doi.org/10.1557/jmr.2003.0058.
Pełny tekst źródłaKumar, Golden, Tadakatsu Ohkubo, and Kazuhiro Hono. "Effect of melt temperature on the mechanical properties of bulk metallic glasses." Journal of Materials Research 24, no. 7 (2009): 2353–60. http://dx.doi.org/10.1557/jmr.2009.0272.
Pełny tekst źródłaZakharenko, M., M. Babich, I. Yurgelevych, S. Zaichenko, and N. Perov. "Magnetic properties of the 3d-based metallic glasses at ductile-brittle transition." Le Journal de Physique IV 08, PR2 (1998): Pr2–99—Pr2–102. http://dx.doi.org/10.1051/jp4:1998223.
Pełny tekst źródłaZhu, Bida, Minsheng Huang, and Zhenhuan Li. "Brittle to ductile transition of metallic glasses induced by embedding spherical nanovoids." Journal of Applied Physics 122, no. 21 (2017): 215108. http://dx.doi.org/10.1063/1.4997281.
Pełny tekst źródłaWang, Q., J. J. Liu, Y. F. Ye, et al. "Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses." Materials Today 20, no. 6 (2017): 293–300. http://dx.doi.org/10.1016/j.mattod.2017.05.007.
Pełny tekst źródłaMoitzi, F., D. Şopu, D. Holec, D. Perera, N. Mousseau, and J. Eckert. "Chemical bonding effects on the brittle-to-ductile transition in metallic glasses." Acta Materialia 188 (April 2020): 273–81. http://dx.doi.org/10.1016/j.actamat.2020.02.002.
Pełny tekst źródłaJiang, F., M. Q. Jiang, H. F. Wang, Y. L. Zhao, L. He, and J. Sun. "Shear transformation zone volume determining ductile–brittle transition of bulk metallic glasses." Acta Materialia 59, no. 5 (2011): 2057–68. http://dx.doi.org/10.1016/j.actamat.2010.12.006.
Pełny tekst źródłaYe, J. C., J. Lu, Y. Yang, and P. K. Liaw. "Study of the intrinsic ductile to brittle transition mechanism of metallic glasses." Acta Materialia 57, no. 20 (2009): 6037–46. http://dx.doi.org/10.1016/j.actamat.2009.08.029.
Pełny tekst źródłaZhao, Jing, Jun Yi, Bo Huang, and Gang Wang. "Metallic Glassy Hollow Microfibers." Metals 12, no. 9 (2022): 1463. http://dx.doi.org/10.3390/met12091463.
Pełny tekst źródłaOzawa, Misaki, Ludovic Berthier, Giulio Biroli, Alberto Rosso, and Gilles Tarjus. "Random critical point separates brittle and ductile yielding transitions in amorphous materials." Proceedings of the National Academy of Sciences 115, no. 26 (2018): 6656–61. http://dx.doi.org/10.1073/pnas.1806156115.
Pełny tekst źródłaGhaemi, Milad, Mehdi Jafary-Zadeh, Khoong Hong Khoo, and Huajian Gao. "Chemical affinity can govern notch-tip brittle-to-ductile transition in metallic glasses." Extreme Mechanics Letters 52 (April 2022): 101651. http://dx.doi.org/10.1016/j.eml.2022.101651.
Pełny tekst źródłaDean, S. W., S. G. Zaichenko, A. M. Glezer, and V. P. Filippova. "Stability of Metallic Glasses: Criteria and Prediction of Ductile-Brittle Transition and Crystallization." Journal of ASTM International 9, no. 2 (2012): 103936. http://dx.doi.org/10.1520/jai103936.
Pełny tekst źródłaJiang, M. Q., G. Wilde, F. Jiang, and L. H. Dai. "Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation." Theoretical and Applied Mechanics Letters 5, no. 5 (2015): 200–204. http://dx.doi.org/10.1016/j.taml.2015.09.002.
Pełny tekst źródłaSingh, I., T. F. Guo, R. Narasimhan, and Y. W. Zhang. "Cavitation in brittle metallic glasses – Effects of stress state and distributed weak zones." International Journal of Solids and Structures 51, no. 25-26 (2014): 4373–85. http://dx.doi.org/10.1016/j.ijsolstr.2014.09.005.
Pełny tekst źródłaYuan, X., D. Şopu, F. Moitzi, K. K. Song, and J. Eckert. "Intrinsic and extrinsic effects on the brittle-to-ductile transition in metallic glasses." Journal of Applied Physics 128, no. 12 (2020): 125102. http://dx.doi.org/10.1063/5.0020201.
Pełny tekst źródłaCui, J. W., R. T. Qu, F. F. Wu, et al. "Shear band evolution during large plastic deformation of brittle and ductile metallic glasses." Philosophical Magazine Letters 90, no. 8 (2010): 573–79. http://dx.doi.org/10.1080/09500839.2010.484399.
Pełny tekst źródłaLiu, Z. Q., W. H. Wang, M. Q. Jiang, and Z. F. Zhang. "Intrinsic factor controlling the deformation and ductile-to-brittle transition of metallic glasses." Philosophical Magazine Letters 94, no. 10 (2014): 658–68. http://dx.doi.org/10.1080/09500839.2014.955548.
Pełny tekst źródłaJeong, Ha Guk, Woo Jin Kim, Jung Chan Bae, Duk Jae Yoon, Seo Gou Choi, and Kyoung Hoan Na. "Hole Punching onto the Zr65Al10Ni10Cu15 BMG Sheet Fabricated by Squeeze Casting." Materials Science Forum 475-479 (January 2005): 3423–26. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.3423.
Pełny tekst źródłaKonstantinidis, Avraam A., Konstantinos Michos, and Elias C. Aifantis. "On the correct interpretation of compression experiments of micropillars produced by a focused ion beam." Journal of the Mechanical Behavior of Materials 25, no. 3-4 (2016): 83–87. http://dx.doi.org/10.1515/jmbm-2016-0009.
Pełny tekst źródłaShamlaye, Karl F., Kevin J. Laws, and Michael Ferry. "Fabrication of Bulk Metallic Glass Composites at Low Processing Temperatures." Materials Science Forum 773-774 (November 2013): 461–65. http://dx.doi.org/10.4028/www.scientific.net/msf.773-774.461.
Pełny tekst źródłaGeissler, David, Jacob Grosse, Sven Donath, et al. "Granulation of Bulk Metallic Glass Forming Alloys as a Feedstock for Thermoplastic Forming and their Compaction into Bulk Samples." Materials Science Forum 879 (November 2016): 589–94. http://dx.doi.org/10.4028/www.scientific.net/msf.879.589.
Pełny tekst źródłaØstergaard, Martin B., Søren R. Hansen, Kacper Januchta, et al. "Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glasses." Materials 12, no. 15 (2019): 2439. http://dx.doi.org/10.3390/ma12152439.
Pełny tekst źródłaZhao, Jiaxi, and Zhefeng Zhang. "On the stress-state dependent plasticity of brittle metallic glasses: Experiment, theory and simulation." Materials Science and Engineering: A 586 (December 2013): 123–32. http://dx.doi.org/10.1016/j.msea.2013.08.009.
Pełny tekst źródłaYin, Jian, Xiujun Ma, and Zhijian Zhou. "Composition and size dependent brittle-to-malleable transitions of Mg-based bulk metallic glasses." Materials Science and Engineering: A 605 (May 2014): 286–93. http://dx.doi.org/10.1016/j.msea.2014.03.065.
Pełny tekst źródłaWei, Yujie. "The intrinsic and extrinsic factors for brittle-to-ductile transition in bulk metallic glasses." Theoretical and Applied Fracture Mechanics 71 (June 2014): 76–78. http://dx.doi.org/10.1016/j.tafmec.2014.06.001.
Pełny tekst źródła