Artykuły w czasopismach na temat „Brake cooling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Brake cooling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ramachandran, G., K. Kathiresan i M. Venkatesan. "Brake Characteristics and Cooling Methods – A Review". Applied Mechanics and Materials 813-814 (listopad 2015): 949–53. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.949.
Pełny tekst źródłaMullisen, R. S. "Thermal Engineering Design Project: Disk Brake Cooling Simulation". International Journal of Mechanical Engineering Education 25, nr 4 (październik 1997): 299–305. http://dx.doi.org/10.1177/030641909702500406.
Pełny tekst źródłaBelhocien, Ali, i Wan Zaidi Wan Omar. "CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor". Journal of Multiscale Modelling 09, nr 01 (marzec 2018): 1750008. http://dx.doi.org/10.1142/s1756973717500081.
Pełny tekst źródłaDuan, Zheng Yong, Yong Peng i Heng Wu. "Optimization and Control Researches into the Cooling System of Pneumatic Disc Brake". Advanced Materials Research 479-481 (luty 2012): 1414–20. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.1414.
Pełny tekst źródłaHsueh, M. H. "The Application of Thermoelectric Cooling Module in the Vehicle's Braking System". Applied Mechanics and Materials 163 (kwiecień 2012): 226–32. http://dx.doi.org/10.4028/www.scientific.net/amm.163.226.
Pełny tekst źródłaArasu, S., i A. Krishnamoorthy. "Design and Manufacturing of Conical Vent Profile Disc Brake". Applied Mechanics and Materials 766-767 (czerwiec 2015): 1028–33. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.1028.
Pełny tekst źródłaKathiresan, K., J. Adhavan i M. Venkatesan. "Experimental Investigation on Droplet Cooling of Brakes". Applied Mechanics and Materials 592-594 (lipiec 2014): 1585–89. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1585.
Pełny tekst źródłaVoller, G. P., M. Tirovic, R. Morris i P. Gibbens. "Analysis of automotive disc brake cooling characteristics". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217, nr 8 (1.08.2003): 657–66. http://dx.doi.org/10.1243/09544070360692050.
Pełny tekst źródłaLyons, O. F. P., D. B. Murray i A. A. Torrance. "Air jet cooling of brake discs". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, nr 6 (1.06.2008): 995–1004. http://dx.doi.org/10.1243/09544062jmes927.
Pełny tekst źródłaAntczak, Kamil, i Marcin Sosnowski. "Simulation of the influence of brake disc geometry of its cooling efficiency". International Journal of Engineering and Safety Sciences 1 (2020): 39–52. http://dx.doi.org/10.16926/ijess.2020.01.03.
Pełny tekst źródłaIvanova, L., i E. Kolotilo. "Bathroom brake circuits with vermicular graphite". Theory and practice of metallurgy, nr 6 (20.11.2018): 40–49. http://dx.doi.org/10.34185/tpm.6.2018.05.
Pełny tekst źródłaStevens, Kevin, i Marko Tirovic. "Heat dissipation from a stationary brake disc, Part 1: Analytical modelling and experimental investigations". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, nr 9 (18.05.2017): 1707–33. http://dx.doi.org/10.1177/0954406217707983.
Pełny tekst źródłaKrivosheya, Yuriy Vladimirovich, i Viktor Vasilyevich Bugaenko. "Fan cooling of friction band brake of railway rolling stock". Transport of the Urals, nr 4 (2020): 13–17. http://dx.doi.org/10.20291/1815-9400-2020-4-13-17.
Pełny tekst źródłaHe, Ya Feng. "The Performance Research of Automobile Disc Brake Based on Finite Element Technology". Advanced Materials Research 381 (listopad 2011): 90–93. http://dx.doi.org/10.4028/www.scientific.net/amr.381.90.
Pełny tekst źródłaLe Gigan, Gaël. "Improvement in the brake disc design for heavy vehicles by parametric evaluation". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, nr 14 (5.02.2017): 1989–2004. http://dx.doi.org/10.1177/0954407016688421.
Pełny tekst źródłaGrigoratos, Theodoros, Carlos Agudelo, Jaroslaw Grochowicz, Sebastian Gramstat, Matt Robere, Guido Perricone, Agusti Sin i in. "Statistical Assessment and Temperature Study from the Interlaboratory Application of the WLTP–Brake Cycle". Atmosphere 11, nr 12 (2.12.2020): 1309. http://dx.doi.org/10.3390/atmos11121309.
Pełny tekst źródłaZhang, Shi Zhen, Wei Rui Wang, Liang Jin i Wei Jiang. "Numerical Analysis and Experimental Study on Temperature Field of Brake Disc during the Air-Cooling Process". Advanced Materials Research 189-193 (luty 2011): 2009–12. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.2009.
Pełny tekst źródłaLi, Gaohui. "The Design of the Automobile Brake Cooling System". OALib 05, nr 04 (2018): 1–10. http://dx.doi.org/10.4236/oalib.1104567.
Pełny tekst źródłaPetry, Matthias, Abdelkrim Lamjahdy, Ali Jawad, Bernd Markert i Hubertus Murrenhoff. "Validation of a thermo- and a hydromechanical model of a brake system for high-speed rail applications". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 232, nr 8 (26.03.2018): 2149–62. http://dx.doi.org/10.1177/0954409718765348.
Pełny tekst źródłaSuchánek, Andrej, Jozef Harušinec, Mária Loulová i Peter Strážovec. "Analysis of the distribution of temperature fields in the braked railway wheel". MATEC Web of Conferences 157 (2018): 02048. http://dx.doi.org/10.1051/matecconf/201815702048.
Pełny tekst źródłaLi, Sui Ping, Wei Dong Chen i Jing Jing Yao. "Based on the Double SCM Real Time Control System Design of Drum Brake". Advanced Materials Research 706-708 (czerwiec 2013): 667–73. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.667.
Pełny tekst źródłaGarcía-León, Ricardo A., i Eder Flórez-Solano. "Dynamic analysis of three autoventilated disc brakes". Ingeniería e Investigación 37, nr 3 (1.09.2017): 102–14. http://dx.doi.org/10.15446/ing.investig.v37n3.63381.
Pełny tekst źródłaVdovin, Alexey, Mats Gustafsson i Simone Sebben. "A coupled approach for vehicle brake cooling performance simulations". International Journal of Thermal Sciences 132 (październik 2018): 257–66. http://dx.doi.org/10.1016/j.ijthermalsci.2018.05.016.
Pełny tekst źródłaTirovic, Marko, i Kevin Stevens. "Heat dissipation from a stationary brake disc, Part 2: CFD modelling and experimental validations". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, nr 10 (18.05.2017): 1898–924. http://dx.doi.org/10.1177/0954406217707984.
Pełny tekst źródłaMaleque, M. A., M. M. Rahman i M. S. Hossain. "Conceptual Design of Aluminium Metal Matrix Composite Brake Rotor System". Advanced Materials Research 264-265 (czerwiec 2011): 1648–53. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.1648.
Pełny tekst źródłaXiong, Jing Jing, i Li Tao Zhou. "The Research and Development of Motor Cooling Control System Based on Electronic Parking Brake Test Bench". Applied Mechanics and Materials 733 (luty 2015): 674–79. http://dx.doi.org/10.4028/www.scientific.net/amm.733.674.
Pełny tekst źródłaJiang, Lan, Yanli Jiang, Liang Yu, Hongliang Yang, Zishen Li i Youdong Ding. "Thermo-Mechanical Coupling Analyses for Al Alloy Brake Discs with Al2O3-SiC(3D)/Al Alloy Composite Wear-Resisting Surface Layer for High-Speed Trains". Materials 12, nr 19 (27.09.2019): 3155. http://dx.doi.org/10.3390/ma12193155.
Pełny tekst źródłaTang, Wen Xian, Yun Di Cai, Cheng Cheng i Qiu Yun Huang. "Thermal Stress Analysis of Water-Cooling Brake Disc Based on 3D Thermo-Mechanical Coupling Model". Advanced Materials Research 314-316 (sierpień 2011): 1581–86. http://dx.doi.org/10.4028/www.scientific.net/amr.314-316.1581.
Pełny tekst źródłaRouhi Moghanlou, Mohammad, i Hamed Saeidi Googarchin. "Three-dimensional coupled thermo-mechanical analysis for fatigue failure of a heavy vehicle brake disk: Simulation of braking and cooling phases". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, nr 13 (1.06.2020): 3145–63. http://dx.doi.org/10.1177/0954407020921711.
Pełny tekst źródłaBorawski, Andrzej. "Suggested Research Method for Testing Selected Tribological Properties of Friction Components in Vehicle Braking Systems". Acta Mechanica et Automatica 10, nr 3 (1.09.2016): 223–26. http://dx.doi.org/10.1515/ama-2016-0034.
Pełny tekst źródłaVernersson, T., i R. Lundén. "Temperatures at railway tread braking. Part 3: wheel and block temperatures and the influence of rail chill". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 221, nr 4 (1.07.2007): 443–54. http://dx.doi.org/10.1243/09544097jrrt91.
Pełny tekst źródłaSayeed Ahmed, Gulam, i Salem Algarni. "Design, Development and FE Thermal Analysis of a Radially Grooved Brake Disc Developed through Direct Metal Laser Sintering". Materials 11, nr 7 (13.07.2018): 1211. http://dx.doi.org/10.3390/ma11071211.
Pełny tekst źródłaHolshev, N. V., A. A. Lavrenchenko, A. V. Prokhorov i D. N. Konovalov. "The method of thermal calculation of automotive disc brake assemblies". Вестник гражданских инженеров 17, nr 4 (2020): 203–8. http://dx.doi.org/10.23968/1999-5571-2020-17-4-203-208.
Pełny tekst źródłaLitvinov, A. E., P. A. Polyakov, E. A. Polyakova, R. S. Tagiev, E. S. Fedotov i A. A. Golikov. "Development of Methodology for Evaluating the Brake Disc Cooling System". Bulletin of Kalashnikov ISTU 23, nr 1 (15.06.2020): 14. http://dx.doi.org/10.22213/2413-1172-2020-1-14-22.
Pełny tekst źródłaGarcía-León, Ricardo Andres, Wilder Quintero-Quintero i Magda Rodriguez-Castilla. "Thermal analysis of three motorcycle disc brakes". Smart and Sustainable Built Environment 9, nr 2 (20.11.2019): 208–26. http://dx.doi.org/10.1108/sasbe-07-2019-0098.
Pełny tekst źródłaNisonger, Robert L., Chih-hung Yen i David Antanaitis. "High Temperature Brake Cooling - Characterization for Brake System Modeling in Race Track and High Energy Driving Conditions". SAE International Journal of Passenger Cars - Mechanical Systems 4, nr 1 (12.04.2011): 384–98. http://dx.doi.org/10.4271/2011-01-0566.
Pełny tekst źródłaDyko, M. P., i K. Vafai. "Fundamental Issues and Recent Advancements in Analysis of Aircraft Brake Natural Convective Cooling". Journal of Heat Transfer 120, nr 4 (1.11.1998): 840–57. http://dx.doi.org/10.1115/1.2825903.
Pełny tekst źródłaGramstat, Sebastian, Thilo Mertens, Robert Waninger i Dmytro Lugovyy. "Impacts on Brake Particle Emission Testing". Atmosphere 11, nr 10 (21.10.2020): 1132. http://dx.doi.org/10.3390/atmos11101132.
Pełny tekst źródłaVdovin, Alexey, i Gaël Le Gigan. "Aerodynamic and Thermal Modelling of Disc Brakes—Challenges and Limitations". Energies 13, nr 1 (1.01.2020): 203. http://dx.doi.org/10.3390/en13010203.
Pełny tekst źródłaMunisamy, Kannan M., i Ramel Shafik. "Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)". IOP Conference Series: Earth and Environmental Science 16 (17.06.2013): 012109. http://dx.doi.org/10.1088/1755-1315/16/1/012109.
Pełny tekst źródłaHuang, Hui, Shumei Chen i Kaifeng Chen. "Novel magnetorheological brake with self-protection and water cooling for elevators". Journal of Mechanical Science and Technology 32, nr 5 (maj 2018): 1955–64. http://dx.doi.org/10.1007/s12206-018-0403-6.
Pełny tekst źródłaZheng, Xun Jia, Tian Hong Luo i Ce Jia. "Dynamic Response Modeling of Fluid-Solid Coupling for Wet Brake Disc". Applied Mechanics and Materials 475-476 (grudzień 2013): 1397–401. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.1397.
Pełny tekst źródłaKalaaji, Jad, i Mervat Madi. "Reduction of disc brake fading using both design and material optimization". MATEC Web of Conferences 261 (2019): 02004. http://dx.doi.org/10.1051/matecconf/201926102004.
Pełny tekst źródłaGao, C. H., J. M. Huang, X. Z. Lin i X. S. Tang. "Stress Analysis of Thermal Fatigue Fracture of Brake Disks Based on Thermomechanical Coupling". Journal of Tribology 129, nr 3 (6.12.2006): 536–43. http://dx.doi.org/10.1115/1.2736437.
Pełny tekst źródłaPalmer, E., R. Mishra i J. Fieldhouse. "An optimization study of a multiple-row pin-vented brake disc to promote brake cooling using computational fluid dynamics". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223, nr 7 (lipiec 2009): 865–75. http://dx.doi.org/10.1243/09544070jauto1053.
Pełny tekst źródłaBao, Ze Fu, Hai Feng Dai, Peng Zang i Jiang Ping Wang. "Design and Application of Forced Heat Dispersing Device of Superdeep Drilling Rig in High Temperature". Advanced Materials Research 339 (wrzesień 2011): 561–65. http://dx.doi.org/10.4028/www.scientific.net/amr.339.561.
Pełny tekst źródłaHan, Ying. "Study on Hydraulic System for Full Hybrid Transmission". Applied Mechanics and Materials 607 (lipiec 2014): 495–99. http://dx.doi.org/10.4028/www.scientific.net/amm.607.495.
Pełny tekst źródłaIdusuyi, Nosa, Ijeoma Babajide, Oluwaseun K. Ajayi i Temilola T. Olugasa. "A Computational Study on the Use of an Aluminium Metal Matrix Composite and Aramid as Alternative Brake Disc and Brake Pad Material". Journal of Engineering 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/494697.
Pełny tekst źródłaKim, Moo-Geun, Sung-Kyu Ko i Moon-Wan Lee. "A Study for the Cooling Performance of a Brake with Heat Pipes". Journal of the Korean Society of Marine Engineering 32, nr 4 (31.05.2008): 563–69. http://dx.doi.org/10.5916/jkosme.2008.32.4.563.
Pełny tekst źródłaGalindo-Lopez, C. H., i M. Tirovic. "Understanding and improving the convective cooling of brake discs with radial vanes". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 222, nr 7 (lipiec 2008): 1211–29. http://dx.doi.org/10.1243/09544070jauto594.
Pełny tekst źródła