Artykuły w czasopismach na temat „Brain signal acquisition”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Brain signal acquisition”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shelishiyah, R., M. Bharani Dharan, T. Kishore Kumar, R. Musaraf i Thiyam Deepa Beeta. "Signal Processing for Hybrid BCI Signals". Journal of Physics: Conference Series 2318, nr 1 (1.08.2022): 012007. http://dx.doi.org/10.1088/1742-6596/2318/1/012007.
Pełny tekst źródłaWang, Jiu Hui, i Qiang Ji. "Research on Signal Acquisition Based on Wireless Sensor for Foot Compressive Characteristics on Basketball Movement". Applied Mechanics and Materials 483 (grudzień 2013): 401–4. http://dx.doi.org/10.4028/www.scientific.net/amm.483.401.
Pełny tekst źródłaYuan, Lixue, Yinyan Fan, Quanxi Gan i Huibin Feng. "Clinical Diagnosis of Psychiatry Based on Electroencephalography". Journal of Medical Imaging and Health Informatics 11, nr 3 (1.03.2021): 955–63. http://dx.doi.org/10.1166/jmihi.2021.3338.
Pełny tekst źródłaEdison, Rizki Edmi, Rohmadi Rohmadi, Sra Harke Pratama, Muhammad Fathul Ihsan, Almusfi Saputra i Warsito Purwo Taruno. "Design of Brain Activity Measurement for Brain ECVT Data Acquisition System". International Journal of Innovative Research in Medical Science 6, nr 10 (1.10.2021): 630–34. http://dx.doi.org/10.23958/ijirms/vol06-i10/1223.
Pełny tekst źródłaWang, Shinmin, Ovid J. L. Tzeng i Richard N. Aslin. "Predictive brain signals mediate association between shared reading and expressive vocabulary in infants". PLOS ONE 17, nr 8 (3.08.2022): e0272438. http://dx.doi.org/10.1371/journal.pone.0272438.
Pełny tekst źródłaLin, Jzau Sgeng, i Sun Ming Huang. "An FPGA-Based Brain-Computer Interface for Wireless Electric Wheelchairs". Applied Mechanics and Materials 284-287 (styczeń 2013): 1616–21. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1616.
Pełny tekst źródłaRanjandish, Reza, i Alexandre Schmid. "A Review of Microelectronic Systems and Circuit Techniques for Electrical Neural Recording Aimed at Closed-Loop Epilepsy Control". Sensors 20, nr 19 (8.10.2020): 5716. http://dx.doi.org/10.3390/s20195716.
Pełny tekst źródłaPerman, William H., Mokhtar H. Gado, Kenneth B. Larson i Joel S. Perlmutter. "Simultaneous MR Acquisition of Arterial and Brain Signal-Time Curves". Magnetic Resonance in Medicine 28, nr 1 (listopad 1992): 74–83. http://dx.doi.org/10.1002/mrm.1910280108.
Pełny tekst źródłaChenane, Kathia, Youcef Touati, Larbi Boubchir i Boubaker Daachi. "Neural Net-Based Approach to EEG Signal Acquisition and Classification in BCI Applications". Computers 8, nr 4 (4.12.2019): 87. http://dx.doi.org/10.3390/computers8040087.
Pełny tekst źródłaVajravelu, Ashok, Muhammad Mahadi Bin Abdul Jamil, Mohd Helmy Bin Abd Wahab, Wan Suhaimizan Bin Wan Zaki, Vibin Mammen Vinod, Karthik Ramasamy Palanisamy i Gousineyah Nageswara Rao. "Nanocomposite-Based Electrode Structures for EEG Signal Acquisition". Crystals 12, nr 11 (27.10.2022): 1526. http://dx.doi.org/10.3390/cryst12111526.
Pełny tekst źródłaFerrari, Rosana, Aldo Ivan Cespedes Arce, Mariza Pires de Melo i Ernane Jose Xavier Costa. "Noninvasive method to assess the electrical brain activity from rats". Ciência Rural 43, nr 10 (20.08.2013): 1838–42. http://dx.doi.org/10.1590/s0103-84782013005000117.
Pełny tekst źródłaAach, T., H. Witte i T. M. Lehmann. "Sensor, Signal and Image Informatics". Yearbook of Medical Informatics 15, nr 01 (sierpień 2006): 57–67. http://dx.doi.org/10.1055/s-0038-1638479.
Pełny tekst źródłaOrban, Mostafa, Mahmoud Elsamanty, Kai Guo, Senhao Zhang i Hongbo Yang. "A Review of Brain Activity and EEG-Based Brain–Computer Interfaces for Rehabilitation Application". Bioengineering 9, nr 12 (5.12.2022): 768. http://dx.doi.org/10.3390/bioengineering9120768.
Pełny tekst źródłaAbdulwahab, Samaa S., Hussain K. Khleaf i Manal H. Jassim. "A Survey in Implementation and Applications of Electroencephalograph (EEG)-Based Brain-Computer Interface". Engineering and Technology Journal 39, nr 7 (25.07.2021): 1117–32. http://dx.doi.org/10.30684/etj.v39i7.1854.
Pełny tekst źródłaGopalakrishnaiah, Shubratha Koralagundi, Kevin Joseph i Ulrich G. Hofmann. "Microfluidic drive for flexible brain implants". Current Directions in Biomedical Engineering 3, nr 2 (7.09.2017): 675–78. http://dx.doi.org/10.1515/cdbme-2017-0142.
Pełny tekst źródłaYarmish, Gail, i Michael L. Lipton. "Functional Magnetic Resonance Imaging: From Acquisition to Application". Einstein Journal of Biology and Medicine 20, nr 1 (2.03.2016): 2. http://dx.doi.org/10.23861/ejbm200320103.
Pełny tekst źródłaQiao, Xiao Yan, i Jia Hui Peng. "P300 Feature Extraction of Visual and Auditory Evoked EEG Signal". Applied Mechanics and Materials 490-491 (styczeń 2014): 1374–77. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.1374.
Pełny tekst źródłaTong, Peiwen, Hui Xu, Yi Sun, Yongzhou Wang, Wei Wang i Jiwei Li. "Electroencephalogram signal analysis with 1T1R arrays toward high-efficiency brain computer interface". AIP Advances 12, nr 12 (1.12.2022): 125108. http://dx.doi.org/10.1063/5.0117159.
Pełny tekst źródłaJurgielewicz, Paweł, Tomasz Fiutowski, Ewa Kublik, Andrzej Skoczeń, Małgorzata Szypulska, Piotr Wiącek, Paweł Hottowy i Bartosz Mindur. "Modular Data Acquisition System for Recording Activity and Electrical Stimulation of Brain Tissue Using Dedicated Electronics". Sensors 21, nr 13 (28.06.2021): 4423. http://dx.doi.org/10.3390/s21134423.
Pełny tekst źródłaBahr, Andreas, Lait Abu Saleh, Dietmar Schroeder i Wolfgang H. Krautschneider. "High speed digital interfacing for a neural data acquisition system". Current Directions in Biomedical Engineering 2, nr 1 (1.09.2016): 87–90. http://dx.doi.org/10.1515/cdbme-2016-0022.
Pełny tekst źródłaKarimi-Bidhendi, Alireza, Omid Malekzadeh-Arasteh, Mao-Cheng Lee, Colin M. McCrimmon, Po T. Wang, Akshay Mahajan, Charles Yu Liu, Zoran Nenadic, An H. Do i Payam Heydari. "CMOS Ultralow Power Brain Signal Acquisition Front-Ends: Design and Human Testing". IEEE Transactions on Biomedical Circuits and Systems 11, nr 5 (październik 2017): 1111–22. http://dx.doi.org/10.1109/tbcas.2017.2723607.
Pełny tekst źródłaKasper, Lars, Maria Engel, Christoph Barmet, Maximilian Haeberlin, Bertram J. Wilm, Benjamin E. Dietrich, Thomas Schmid i in. "Rapid anatomical brain imaging using spiral acquisition and an expanded signal model". NeuroImage 168 (marzec 2018): 88–100. http://dx.doi.org/10.1016/j.neuroimage.2017.07.062.
Pełny tekst źródłaEnglert, Robert, Fabienne Rupp, Frank Kirchhoff, Klaus Peter Koch i Michael Schweigmann. "Technical characterization of an 8 or 16 channel recording system to acquire electrocorticograms of mice". Current Directions in Biomedical Engineering 3, nr 2 (7.09.2017): 595–98. http://dx.doi.org/10.1515/cdbme-2017-0124.
Pełny tekst źródłaTong, Yunjie, Kimberly P. Lindsey i Blaise deB Frederick. "Partitioning of Physiological Noise Signals in the Brain with Concurrent Near-Infrared Spectroscopy and fMRI". Journal of Cerebral Blood Flow & Metabolism 31, nr 12 (3.08.2011): 2352–62. http://dx.doi.org/10.1038/jcbfm.2011.100.
Pełny tekst źródłaStevenazzi, Lorenzo, Andrea Baschirotto, Giorgio Zanotto, Elia Arturo Vallicelli i Marcello De Matteis. "Noise Power Minimization in CMOS Brain-Chip Interfaces". Bioengineering 9, nr 2 (18.01.2022): 42. http://dx.doi.org/10.3390/bioengineering9020042.
Pełny tekst źródłaRe, Rebecca, Ileana Pirovano, Davide Contini, Caterina Amendola, Letizia Contini, Lorenzo Frabasile, Pietro Levoni, Alessandro Torricelli i Lorenzo Spinelli. "Reliable Fast (20 Hz) Acquisition Rate by a TD fNIRS Device: Brain Resting-State Oscillation Studies". Sensors 23, nr 1 (24.12.2022): 196. http://dx.doi.org/10.3390/s23010196.
Pełny tekst źródłaLee, Do-Wan, Chul-Woong Woo, Dong-Cheol Woo, Jeong Kon Kim, Kyung Won Kim i Dong-Hoon Lee. "Regional Mapping of Brain Glutamate Distributions Using Glutamate-Weighted Chemical Exchange Saturation Transfer Imaging". Diagnostics 10, nr 8 (8.08.2020): 571. http://dx.doi.org/10.3390/diagnostics10080571.
Pełny tekst źródłaXu, Bao Lei, Yun Fa Fu, Gang Shi, Xu Xian Yin, Lei Miao, Zhi Dong Wang i Hong Yi Li. "Comparison of Optical and Concentration Feature Used for fNIRS-Based BCI System Using HMM". Applied Mechanics and Materials 385-386 (sierpień 2013): 1443–48. http://dx.doi.org/10.4028/www.scientific.net/amm.385-386.1443.
Pełny tekst źródłaChang, Yuwei. "Enhancement of Human Feeling via AI-based BCI: A Survey". Highlights in Science, Engineering and Technology 36 (21.03.2023): 633–37. http://dx.doi.org/10.54097/hset.v36i.5748.
Pełny tekst źródłaLiu, Huawei, Adam W. Autry, Peder E. Z. Larson, Duan Xu i Yan Li. "Atlas-Based Adaptive Hadamard-Encoded MR Spectroscopic Imaging at 3T". Tomography 9, nr 5 (23.08.2023): 1592–602. http://dx.doi.org/10.3390/tomography9050127.
Pełny tekst źródłaChaddad, Ahmad, Yihang Wu, Reem Kateb i Ahmed Bouridane. "Electroencephalography Signal Processing: A Comprehensive Review and Analysis of Methods and Techniques". Sensors 23, nr 14 (16.07.2023): 6434. http://dx.doi.org/10.3390/s23146434.
Pełny tekst źródłaChanu, Oinam Robita, R. Kalpana, B. Soorya, R. Santhosh i V. Karthik Raj. "Development of a Hardware Circuit for Real-Time Acquisition of Brain Activity Using NI myDAQ". Journal of Circuits, Systems and Computers 29, nr 10 (21.01.2020): 2050170. http://dx.doi.org/10.1142/s0218126620501704.
Pełny tekst źródłaMartínez-Villaseñor, Lourdes, i Hiram Ponce. "A concise review on sensor signal acquisition and transformation applied to human activity recognition and human–robot interaction". International Journal of Distributed Sensor Networks 15, nr 6 (czerwiec 2019): 155014771985398. http://dx.doi.org/10.1177/1550147719853987.
Pełny tekst źródłaGao, Xiang, Gesangzeren Fnu i Xianshu Wan. "Development of the Electroencephalograph-based Brain Computer Interface System". Journal of Physics: Conference Series 2078, nr 1 (1.11.2021): 012079. http://dx.doi.org/10.1088/1742-6596/2078/1/012079.
Pełny tekst źródłaQing, Zengyu, Zongxing Lu, Yingjie Cai i Jing Wang. "Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time". Sensors 21, nr 22 (19.11.2021): 7713. http://dx.doi.org/10.3390/s21227713.
Pełny tekst źródłaPARK, HYUNG-MIN, JONG-HWAN LEE, TAESU KIM, UN-MIN BAE, BYUNG TAEK KIM, KI-YOUNG PARK, CHANG-MIN KIM i SOO-YOUNG LEE. "MODELING AUDITORY PATHWAY FOR INTELLIGENT INFORMATION ACQUISITION". International Journal of Information Acquisition 01, nr 04 (grudzień 2004): 345–56. http://dx.doi.org/10.1142/s0219878904000367.
Pełny tekst źródłaMoreno Escobar, Jesús Jaime, Oswaldo Morales Matamoros, Ricardo Tejeida Padilla, Liliana Chanona Hernández, Juan Pablo Francisco Posadas Durán, Ana Karen Pérez Martínez, Ixchel Lina Reyes i Hugo Quintana Espinosa. "Biomedical Signal Acquisition Using Sensors under the Paradigm of Parallel Computing". Sensors 20, nr 23 (7.12.2020): 6991. http://dx.doi.org/10.3390/s20236991.
Pełny tekst źródłaMascia, Antonello, Riccardo Collu, Andrea Spanu, Matteo Fraschini, Massimo Barbaro i Piero Cosseddu. "Wearable System Based on Ultra-Thin Parylene C Tattoo Electrodes for EEG Recording". Sensors 23, nr 2 (9.01.2023): 766. http://dx.doi.org/10.3390/s23020766.
Pełny tekst źródłaZhang, Yu Xi, Wen Gui Fan i Jin Ping Sun. "Compressed Sensing Based Neural Signal Processing and Performance Analysis". Applied Mechanics and Materials 513-517 (luty 2014): 1595–99. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1595.
Pełny tekst źródłaBrowarska, Natalia, Aleksandra Kawala-Sterniuk, Jaroslaw Zygarlicki, Michal Podpora, Mariusz Pelc, Radek Martinek i Edward Gorzelańczyk. "Comparison of Smoothing Filters’ Influence on Quality of Data Recorded with the Emotiv EPOC Flex Brain–Computer Interface Headset during Audio Stimulation". Brain Sciences 11, nr 1 (13.01.2021): 98. http://dx.doi.org/10.3390/brainsci11010098.
Pełny tekst źródłaVidaurre, Carmen, Tilmann H. Sander i Alois Schlögl. "BioSig: The Free and Open Source Software Library for Biomedical Signal Processing". Computational Intelligence and Neuroscience 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/935364.
Pełny tekst źródłaRama Raju, Venkateshwarla, Kavitha Rani Balmuri, Konda Srinivas i G. Madhukar. "MER Signal Acquisition of STN-DBS Biomarkers in Parkinson`s: A machine learning auto regression approach". IP Indian Journal of Neurosciences 7, nr 3 (15.09.2021): 224–30. http://dx.doi.org/10.18231/j.ijn.2021.040.
Pełny tekst źródłaMa, Tengfei, Wentian Chen, Xin Li, Yuting Xia, Xinhua Zhu i Sailing He. "fNIRS Signal Classification Based on Deep Learning in Rock-Paper-Scissors Imagery Task". Applied Sciences 11, nr 11 (27.05.2021): 4922. http://dx.doi.org/10.3390/app11114922.
Pełny tekst źródłaBhagawati, Amlan Jyoti, i Riku Chutia. "Design of Single Channel Portable EEG Signal Acquisition System for Brain Computer Interface Application". International journal of Biomedical Engineering and Science 3, nr 1 (30.01.2016): 37–44. http://dx.doi.org/10.5121/ijbes.2016.3103.
Pełny tekst źródłaNallet, Caroline, i Judit Gervain. "Neurodevelopmental Preparedness for Language in the Neonatal Brain". Annual Review of Developmental Psychology 3, nr 1 (9.12.2021): 41–58. http://dx.doi.org/10.1146/annurev-devpsych-050620-025732.
Pełny tekst źródłaZhi, Chunxiang. "A Brain-Myoelectric Signal-Based Approach to Hand Rehabilitation in Stroke". Scholars Journal of Engineering and Technology 11, nr 06 (30.06.2023): 139–46. http://dx.doi.org/10.36347/sjet.2023.v11i06.003.
Pełny tekst źródłaDimitrov, Georgi P., Galina Panayotova, Boyan Jekov, Pavel Petrov, Iva Kostadinova, Snejana Petrova, Olexiy S. Bychkov, Vasyl Martsenyuk i Aleksandar Parvanov. "Algorithms for Classification of Signals Derived From Human Brain". International Journal of Circuits, Systems and Signal Processing 15 (20.09.2021): 1521–26. http://dx.doi.org/10.46300/9106.2021.15.164.
Pełny tekst źródłaJin, Zhaoyang, Ling Xia, Minming Zhang i Yiping P. Du. "Background-Suppressed MR Venography of the Brain Using Magnitude Data: A High-Pass Filtering Approach". Computational and Mathematical Methods in Medicine 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/812785.
Pełny tekst źródłaSudha Kumari, Lekshmy, i Abbas Z. Kouzani. "A Miniaturized Closed-Loop Optogenetic Brain Stimulation Device". Electronics 11, nr 10 (17.05.2022): 1591. http://dx.doi.org/10.3390/electronics11101591.
Pełny tekst źródłaSAFAIE, J., R. GREBE, H. ABRISHAMI MOGHADDAM i F. WALLOIS. "WIRELESS DISTRIBUTED ACQUISITION SYSTEM FOR NEAR INFRARED SPECTROSCOPY – WDA-NIRS". Journal of Innovative Optical Health Sciences 06, nr 03 (lipiec 2013): 1350019. http://dx.doi.org/10.1142/s1793545813500193.
Pełny tekst źródła