Gotowa bibliografia na temat „Brain signal acquisition”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Brain signal acquisition”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Brain signal acquisition"
Shelishiyah, R., M. Bharani Dharan, T. Kishore Kumar, R. Musaraf i Thiyam Deepa Beeta. "Signal Processing for Hybrid BCI Signals". Journal of Physics: Conference Series 2318, nr 1 (1.08.2022): 012007. http://dx.doi.org/10.1088/1742-6596/2318/1/012007.
Pełny tekst źródłaWang, Jiu Hui, i Qiang Ji. "Research on Signal Acquisition Based on Wireless Sensor for Foot Compressive Characteristics on Basketball Movement". Applied Mechanics and Materials 483 (grudzień 2013): 401–4. http://dx.doi.org/10.4028/www.scientific.net/amm.483.401.
Pełny tekst źródłaYuan, Lixue, Yinyan Fan, Quanxi Gan i Huibin Feng. "Clinical Diagnosis of Psychiatry Based on Electroencephalography". Journal of Medical Imaging and Health Informatics 11, nr 3 (1.03.2021): 955–63. http://dx.doi.org/10.1166/jmihi.2021.3338.
Pełny tekst źródłaEdison, Rizki Edmi, Rohmadi Rohmadi, Sra Harke Pratama, Muhammad Fathul Ihsan, Almusfi Saputra i Warsito Purwo Taruno. "Design of Brain Activity Measurement for Brain ECVT Data Acquisition System". International Journal of Innovative Research in Medical Science 6, nr 10 (1.10.2021): 630–34. http://dx.doi.org/10.23958/ijirms/vol06-i10/1223.
Pełny tekst źródłaWang, Shinmin, Ovid J. L. Tzeng i Richard N. Aslin. "Predictive brain signals mediate association between shared reading and expressive vocabulary in infants". PLOS ONE 17, nr 8 (3.08.2022): e0272438. http://dx.doi.org/10.1371/journal.pone.0272438.
Pełny tekst źródłaLin, Jzau Sgeng, i Sun Ming Huang. "An FPGA-Based Brain-Computer Interface for Wireless Electric Wheelchairs". Applied Mechanics and Materials 284-287 (styczeń 2013): 1616–21. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1616.
Pełny tekst źródłaRanjandish, Reza, i Alexandre Schmid. "A Review of Microelectronic Systems and Circuit Techniques for Electrical Neural Recording Aimed at Closed-Loop Epilepsy Control". Sensors 20, nr 19 (8.10.2020): 5716. http://dx.doi.org/10.3390/s20195716.
Pełny tekst źródłaPerman, William H., Mokhtar H. Gado, Kenneth B. Larson i Joel S. Perlmutter. "Simultaneous MR Acquisition of Arterial and Brain Signal-Time Curves". Magnetic Resonance in Medicine 28, nr 1 (listopad 1992): 74–83. http://dx.doi.org/10.1002/mrm.1910280108.
Pełny tekst źródłaChenane, Kathia, Youcef Touati, Larbi Boubchir i Boubaker Daachi. "Neural Net-Based Approach to EEG Signal Acquisition and Classification in BCI Applications". Computers 8, nr 4 (4.12.2019): 87. http://dx.doi.org/10.3390/computers8040087.
Pełny tekst źródłaVajravelu, Ashok, Muhammad Mahadi Bin Abdul Jamil, Mohd Helmy Bin Abd Wahab, Wan Suhaimizan Bin Wan Zaki, Vibin Mammen Vinod, Karthik Ramasamy Palanisamy i Gousineyah Nageswara Rao. "Nanocomposite-Based Electrode Structures for EEG Signal Acquisition". Crystals 12, nr 11 (27.10.2022): 1526. http://dx.doi.org/10.3390/cryst12111526.
Pełny tekst źródłaRozprawy doktorskie na temat "Brain signal acquisition"
Dvořák, Jiří. "Biofeedback a jeho použití". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217977.
Pełny tekst źródłaCHEN, ZHI-PING, i 陳治平. "Data acquisition system for extracellular neuronal signals of brain slice under effect of voltammetric signal". Thesis, 1991. http://ndltd.ncl.edu.tw/handle/11452405166578878061.
Pełny tekst źródłaGau, Shir-Cheng, i 高士政. "Development of Dual-Core-Processor based Real-Time Wireless Embedded Brain Signal Acquisition / Processing System and its Application on Driver's Drowsiness Estimation". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/77390002178270000538.
Pełny tekst źródła國立交通大學
電機與控制工程系所
93
In this thesis, a portable Real-Time Wireless Embedded Brain Signal Acquisition / Processing System is developed. It combines electroencephalogram signal amplifier technique, wireless transimission technique, and embedded real-time system. This system is convenient for people used in daily life. The developed strategy contain three parts: First, the bluetooth protocol is used as a transmission interface and integrated with the bio-signal amplifier to transmit the measured physiological signals wirelessly. Then, the OMAP is used as a development platform and an embedded operating system for OMAP is also designed. Finally, DSP Gateway is developed as the mechanism in the embedded system to deal with the brain- signal analyzing tasks shared by ARM and DSP. An driver’s cognitive-state estimation has been developed and implementation on the proposed dual-core-processor based real time wireless embedded system for demonstration.
Hsieh, Chang-Wei, i 謝長倭. "A Combined Data Acquisition and Compression Method for Neurotransmission Signals in Brain Slice". Thesis, 1996. http://ndltd.ncl.edu.tw/handle/09083784890826997413.
Pełny tekst źródła國立成功大學
電機工程研究所
84
In the past, it is difficult to observe and study the compound changes of neuronal electric activity and electrochemical variation representing the neurotransmitter efflux simultaneously. The reason is that there is a big difference between on the output formats and frequencies of the recorded signals, and the measuring instruments used. In addition, the two kinds of signals will interfere each other. So that these signals are difficult to detect and record, simultaneously. Moreover, the high sampling frequency for electrophysiological signal will result in the storage problem of a large amount of experimental data for long-term recording. This made the research field and the corresponding instrumentation difficult to break through. The study of a combined data acquisition and compression method for neurotransmission signals in brain slice is tried to solve the problems mentioned above, and divided into three parts: 1. Traditional combined data acquisition architecture for neurotransmission signals in brain slice. 2. Real time data compression method. 3. Combined data acquisition architecture with Virtual Instrument for neurotransmission signals in brain slice. With the study in the paper, it not only made a user friendly environment for the experimentalist of neurotransmission signals in brain slice, but also usefully for the measuring the other physiological signals.
Książki na temat "Brain signal acquisition"
Language, cognition, and the brain: Insights from sign language research. Mahwah, N.J: Lawrence Erlbaum Associates, 2002.
Znajdź pełny tekst źródłaRamani, Ramachandran, red. Functional MRI. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190297763.001.0001.
Pełny tekst źródłaEmmorey, Karen. Language, Cognition, and the Brain: Insights from Sign Language Research. Taylor & Francis Group, 2001.
Znajdź pełny tekst źródłaEmmorey, Karen. Language, Cognition, and the Brain: Insights from Sign Language Research. Taylor & Francis Group, 2001.
Znajdź pełny tekst źródłaEmmorey, Karen. Language, Cognition, and the Brain: Insights from Sign Language Research. Taylor & Francis Group, 2001.
Znajdź pełny tekst źródłaEmmorey, Karen. Language, Cognition, and the Brain: Insights From Sign Language Research. Lawrence Erlbaum, 2001.
Znajdź pełny tekst źródłaEmmorey, Karen. Language, Cognition, and the Brain: Insights from Sign Language Research. Taylor & Francis Group, 2001.
Znajdź pełny tekst źródłaEmmorey, Karen. Language, Cognition, and the Brain: Insights from Sign Language Research. Taylor & Francis Group, 2001.
Znajdź pełny tekst źródłaEmmorey, Karen. Language, Cognition, and the Brain: Insights from Sign Language Research. Taylor & Francis Group, 2001.
Znajdź pełny tekst źródłaEmmorey, Karen. Language, Cognition, and the Brain: Insights From Sign Language Research. Lawrence Erlbaum, 2001.
Znajdź pełny tekst źródłaCzęści książek na temat "Brain signal acquisition"
Maurer, Konrad, i Thomas Dierks. "Data Acquisition and Signal Analysis". W Atlas of Brain Mapping, 23–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76043-3_5.
Pełny tekst źródłaBazán, Paulo Rodrigo, i Edson Amaro. "fMRI and fNIRS Methods for Social Brain Studies: Hyperscanning Possibilities". W Social and Affective Neuroscience of Everyday Human Interaction, 231–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08651-9_14.
Pełny tekst źródłaGrundy, John G., i Ashley Chung-Fat-Yim. "Chapter 12. Domain-general electrophysiological changes associated with bilingualism". W Studies in Bilingualism, 245–71. Amsterdam: John Benjamins Publishing Company, 2023. http://dx.doi.org/10.1075/sibil.64.12gru.
Pełny tekst źródłaKegl, Judy A. "Language emergence in a language-ready brain". W Directions in Sign Language Acquisition, 207–54. Amsterdam: John Benjamins Publishing Company, 2002. http://dx.doi.org/10.1075/tilar.2.12keg.
Pełny tekst źródłaPaszkiel, Szczepan. "Data Acquisition Methods for Human Brain Activity". W Analysis and Classification of EEG Signals for Brain–Computer Interfaces, 3–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30581-9_2.
Pełny tekst źródłaGalíndez-Floréz, Iván, Andrés Coral-Flores, Edna Moncayo-Torres, Dagoberto Mayorca-Torres i Herman Guerrero-Chapal. "Biopotential Signals Acquisition from the Brain Through the MindWave Device: Preliminary Results". W Communications in Computer and Information Science, 139–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42517-3_11.
Pełny tekst źródłaHolzer, Peter. "Interoception and Gut Feelings: Unconscious Body Signals’ Impact on Brain Function, Behavior and Belief Processes". W Processes of Believing: The Acquisition, Maintenance, and Change in Creditions, 435–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50924-2_31.
Pełny tekst źródła"Brain Signal Acquisition". W Deep Learning for EEG-Based Brain–Computer Interfaces, 9–26. WORLD SCIENTIFIC (EUROPE), 2021. http://dx.doi.org/10.1142/9781786349590_0002.
Pełny tekst źródłaAi, Qingsong, Quan Liu, Wei Meng i Sheng Quan Xie. "Brain Signal Acquisition and Preprocessing". W Advanced Rehabilitative Technology, 105–33. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-814597-5.00005-9.
Pełny tekst źródłaS., Vidhya, i Sharmila Nageswaran. "Medical Signal Processing". W Advances in Medical Technologies and Clinical Practice, 81–103. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8018-9.ch006.
Pełny tekst źródłaStreszczenia konferencji na temat "Brain signal acquisition"
Khan, M. Jawad, i Keum-Shik Hong. "Active brain area identification using EEG-NIRS signal acquisition". W 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT). IEEE, 2015. http://dx.doi.org/10.1109/icacomit.2015.7440145.
Pełny tekst źródłaLee, Shuenn-Yuh, Jia-Hua Hong i Liang-Hung Wang. "Wireless brain signal acquisition circuits for body sensor network". W 2012 11th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, 2012. http://dx.doi.org/10.1109/icci-cc.2012.6311129.
Pełny tekst źródłaShi, Zhongyan, Xingyu Han, Bo Jiang, Jiangtao Zhang, Dingjie Suo, Guangying Pei, Tianyi Yan, Ye Wang, Jinglong Wu i Jing Wang. "Wearable Multimodule Bio-signal Acquisition System: Brain Multi-Plus". W 2022 16th ICME International Conference on Complex Medical Engineering (CME). IEEE, 2022. http://dx.doi.org/10.1109/cme55444.2022.10063300.
Pełny tekst źródłaHassani, Kaveh, i Won-Sook Lee. "An experimental study on semi-invasive acupuncture-based EEG signal acquisition". W 2015 3rd International Winter Conference on Brain-Computer Interface (BCI). IEEE, 2015. http://dx.doi.org/10.1109/iww-bci.2015.7073048.
Pełny tekst źródłaLosonczi, Lajos, Laszlo F. Marton, Tihamer S. Brassai, Laszlo Bako, Lorand Farkas i Lorand Farkas. "A novel bio-signal acquisition system for brain computer interfaces". W 2013 4th International Symposium on Electrical and Electronics Engineering (ISEEE). IEEE, 2013. http://dx.doi.org/10.1109/iseee.2013.6674347.
Pełny tekst źródłaYong, Phoo Khai, i Eric Tatt Wei Ho. "Streaming brain and physiological signal acquisition system for IoT neuroscience application". W 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2016. http://dx.doi.org/10.1109/iecbes.2016.7843551.
Pełny tekst źródłaLogeswari, T., i M. Karnan. "Hybrid Self Organizing Map for Improved Implementation of Brain MRI Segmentation". W 2010 International Conference on Signal Acquisition and Processing (ICSAP). IEEE, 2010. http://dx.doi.org/10.1109/icsap.2010.56.
Pełny tekst źródłaLogeswari, T., i M. Karnan. "An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing". W 2010 International Conference on Signal Acquisition and Processing (ICSAP). IEEE, 2010. http://dx.doi.org/10.1109/icsap.2010.55.
Pełny tekst źródłaKim, Seho, Jong Min Lim, Seokchan Yoon, Youngjin Choi, Jin Hee Hong, Wonshik Choi i Minhaeng Cho. "The Effect of Aberration Correction on Coherent Raman Imaging of Mouse Brain Tissues". W 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.jth2a.6.
Pełny tekst źródłaJeyabalan, Vickneswaran, Andrews Samraj i Loo Chu Kiong. "Classification of Motor Imaginary Signals for Machine Commmunication - A Novel Approach for Brain Machine Interface Design". W 2009 International Conference on Signal Acquisition and Processing, ICSAP. IEEE, 2009. http://dx.doi.org/10.1109/icsap.2009.29.
Pełny tekst źródła