Rozprawy doktorskie na temat „Brain electrical signals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 21 najlepszych rozpraw doktorskich naukowych na temat „Brain electrical signals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Khodam, Hazrati Mehrnaz [Verfasser]. "On human-machine interfaces based on electrical brain signals / Mehrnaz Khodam Hazrati". Lübeck : Zentrale Hochschulbibliothek Lübeck, 2014. http://d-nb.info/1054365644/34.
Pełny tekst źródłaYao, Bing. "ANALYSIS OF ELECTRICAL AND MAGNETIC BIO-SIGNALS ASSOCIATED WITH MOTOR PERFORMANCE AND FATIGUE". Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1140813534.
Pełny tekst źródłaMouradi, Rand. "Wireless Signals and Male Fertility". Cleveland State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=csu1318571631.
Pełny tekst źródłaWheland, David Stanford. "Signal processing methods for brain connectivity". Thesis, University of Southern California, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3610033.
Pełny tekst źródłaAlthough the human brain has been studied for centuries, and the advent of non-invasive brain imaging modalities in the last century in particular has led to significant advances, there is much left to discover. Current neuroscientific theory likens the brain to a highly interconnected network whose behavior can be better understood by determining its network connections. Correlation, coherence, Granger causality, and blind source separation (BSS) are frequently used to infer this connectivity. Here I propose novel methods to improve their inference from neuroimaging data. Correlation and coherence suffer from being unable to differentiate between direct and indirect connectivity. While partial correlation and partial coherence can mitigate this problem, standard methods for calculating these measures result in significantly reduced statistical inference power and require greater numbers of samples. To address these drawbacks I propose novel methods based on a graph pruning algorithm that leverage the connectivity sparsity of the brain to improve the inference of partial correlation and partial coherence. These methods are demonstrated in applications. In particular, partial correlation is explored in both cortical thickness data from structural MR images and resting state data from functional MR images, and partial coherence is explored in invasive electrophysiological measurements in non-human primates. Granger causality is able to differentiate between direct and indirect connectivity by default and like partial coherence is readily applicable to time series. However unlike partial coherence, it uses the temporal ordering implied by the time series to infer a type of causality on the connectivity. Despite its differences, the inference of Granger causality can also be improved using a similar graph pruning algorithm, and I describe such an extension here. The method is also applied to explore electrophysiological interactions in non-human primate data. BSS methods seek to decompose a dataset into a linear mixture of sources such that the sources best match some target property, such as independence. The second order blind identification (SOBI) BSS method has a number of properties particularly well-suited for data on the cerebral cortex and relies on the calculation of lagged covariance matrices. However while these lagged covariance matrices are readily available in one-dimensional data, they are not straightforward to calculate on the two-dimensional cortical manifold on which certain types of neuroimaging data lie. To address this, I propose a method for calculating the covariance matrices on the cortical manifold and demonstrate its application to cortical gray matter thickness and curvature data on the cerebral cortex.
Purdon, Patrick L. (Patrick Lee) 1974. "Signal processing in functional magnetic resonance imaging (fMRI) of the brain". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50032.
Pełny tekst źródłaLi, Kun. "Advanced Signal Processing Techniques for Single Trial Electroencephalography Signal Classification for Brain Computer Interface Applications". Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3484.
Pełny tekst źródłaDemanuele, Charmaine. "Analysis of very low frequency oscillations in electromagnetic brain signal recordings". Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/159351/.
Pełny tekst źródłaRenfrew, Mark E. "A Comparison of Signal Processing and Classification Methods for Brain-Computer Interface". Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1246474708.
Pełny tekst źródłaMountney, John M. "Particle Filtering Programmable Gate Array Architecture for Brain Machine Interfaces". Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/140741.
Pełny tekst źródłaPh.D.
Decoding algorithms for brain machine interfaces map neural firing times to the underlying biological output signal through dynamic tuning functions. In order to maintain an accurate estimate of the biological signal, the state of the tuning function parameters must be tracked simultaneously. The evolution of this system state is often estimated by an adaptive filter. Recent work demonstrates that the Bayesian auxiliary particle filter (BAPF) offers improved estimates of the system state and underlying output signal over existing techniques. Performance of the BAPF is evaluated under both ideal conditions and commonly encountered spike detection errors such as missed and false detections and missorted spikes. However, this increase in neuronal signal decoding accuracy is at the expense of an increase in computational complexity. Real-time execution of the BAPF algorithm for neural signals using a sequential processor becomes prohibitive as the number of particles and neurons in the obs
Temple University--Theses
Dharwarkar, Gireesh. "Using Temporal Evidence and Fusion of Time-Frequency Features for Brain-Computer Interfacing". Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/830.
Pełny tekst źródłaBozorgzadeh, Bardia. "Integrated Microsystems for High-Fidelity Sensing and Manipulation of Brain Neurochemistry". Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1432223568.
Pełny tekst źródłaJanwattanapong, Panuwat. "Connectivity Analysis of Electroencephalograms in Epilepsy". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3906.
Pełny tekst źródłaFoldes, Stephen Thomas. "Command of a Virtual Neuroprosthesis-Arm with Noninvasive Field Potentials". Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1290109568.
Pełny tekst źródłaRajaei, Hoda. "Brain Connectivity Networks for the Study of Nonlinear Dynamics and Phase Synchrony in Epilepsy". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3882.
Pełny tekst źródłaMalý, Lukáš. "Ovládání invalidního vozíku pomocí klasifikace EEG signálu". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221361.
Pełny tekst źródłaTernstedt, Andreas. "Pattern recognition with spiking neural networks and the ROLLS low-power online learning neuromorphic processor". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-63033.
Pełny tekst źródłaChandran, Subash K. S. "Analysis of Local Field Potential and Gamma Rhythm Using Matching Pursuit Algorithm". Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2771.
Pełny tekst źródłaBai-Ling, Shu, i 許百靈. "The effects of various pCO2, pO2, and electrical stimulation on functional Magnetic Resonance signals in rat brains". Thesis, 1999. http://ndltd.ncl.edu.tw/handle/45920387071182632938.
Pełny tekst źródła國立臺灣大學
物理學研究所
87
The methodologies of applying magnetic resonance imaging (MRI) to study functional effects in live animals are widely used today. One of these methodologies is to acquire functional images in rat brains while studying the increase of cerebral blood flow with elevation of CO2 concentration. The MR signals are enhanced by increasing blood flow, which causes slight difference of proton density in cerebral vessels. Another methodology is to study MR signal changes under different levels of blood oxygenation. Since the ability of hemoglobin combining with oxygen is different at various O2 concentrations and blood flow, this produces deoxyhemoglobin. Various amounts of deoxyhemoglobin in blood vessels would have different contributions to MR signal changes. Generally, various levels of blood oxygenation causing MR signal changes are called BOLD effect. Furthermore, neuronal activation would cause local oxygenation alterations in cerebral blood vessels and result in BOLD effect. Therefore the stimulation of nerves would be studied by acquiring functional images.
Zhu, Quan. "Signal Processing for Time Series of Functional Magnetic Resonance Imaging". Diss., 2008. http://hdl.handle.net/10161/602.
Pełny tekst źródła"Scheduling Neural Sensors to Estimate Brain Activity". Master's thesis, 2012. http://hdl.handle.net/2286/R.I.14853.
Pełny tekst źródłaDissertation/Thesis
M.S. Electrical Engineering 2012
Chaturvedi, Vikram. "Low Power and Low Area Techniques for Neural Recording Application". Thesis, 2012. http://hdl.handle.net/2005/3167.
Pełny tekst źródła