Artykuły w czasopismach na temat „Brain-age prediction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Brain-age prediction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Xiong, Min, Lan Lin, Yue Jin, Wenjie Kang, Shuicai Wu i Shen Sun. "Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults". Sensors 23, nr 7 (30.03.2023): 3622. http://dx.doi.org/10.3390/s23073622.
Pełny tekst źródłaZhang, Biao, Shuqin Zhang, Jianfeng Feng i Shihua Zhang. "Age-level bias correction in brain age prediction". NeuroImage: Clinical 37 (2023): 103319. http://dx.doi.org/10.1016/j.nicl.2023.103319.
Pełny tekst źródłaGómez-Ramírez, Jaime, Miguel A. Fernández-Blázquez i Javier J. González-Rosa. "Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation". Brain Sciences 12, nr 5 (29.04.2022): 579. http://dx.doi.org/10.3390/brainsci12050579.
Pełny tekst źródłade Lange, Ann-Marie G., i James H. Cole. "Commentary: Correction procedures in brain-age prediction". NeuroImage: Clinical 26 (2020): 102229. http://dx.doi.org/10.1016/j.nicl.2020.102229.
Pełny tekst źródłaDunås, Tora, Anders Wåhlin, Lars Nyberg i Carl-Johan Boraxbekk. "Multimodal Image Analysis of Apparent Brain Age Identifies Physical Fitness as Predictor of Brain Maintenance". Cerebral Cortex 31, nr 7 (5.03.2021): 3393–407. http://dx.doi.org/10.1093/cercor/bhab019.
Pełny tekst źródłaCole, James H., Robert Leech i David J. Sharp. "Prediction of brain age suggests accelerated atrophy after traumatic brain injury". Annals of Neurology 77, nr 4 (25.03.2015): 571–81. http://dx.doi.org/10.1002/ana.24367.
Pełny tekst źródłaLombardi, Angela, Nicola Amoroso, Domenico Diacono, Alfonso Monaco, Sabina Tangaro i Roberto Bellotti. "Extensive Evaluation of Morphological Statistical Harmonization for Brain Age Prediction". Brain Sciences 10, nr 6 (11.06.2020): 364. http://dx.doi.org/10.3390/brainsci10060364.
Pełny tekst źródłaKassani, Peyman Hosseinzadeh, Alexej Gossmann i Yu-Ping Wang. "Multimodal Sparse Classifier for Adolescent Brain Age Prediction". IEEE Journal of Biomedical and Health Informatics 24, nr 2 (luty 2020): 336–44. http://dx.doi.org/10.1109/jbhi.2019.2925710.
Pełny tekst źródłaPeng, Han, Weikang Gong, Christian F. Beckmann, Andrea Vedaldi i Stephen M. Smith. "Accurate brain age prediction with lightweight deep neural networks". Medical Image Analysis 68 (luty 2021): 101871. http://dx.doi.org/10.1016/j.media.2020.101871.
Pełny tekst źródłaLam, Pradeep, Alyssa Zhu, Lauren Salminen, Sophia Thomopoulos, Neda Jahanshad i Paul Thompson. "Comparison of Deep Learning Methods for Brain Age Prediction". Biological Psychiatry 87, nr 9 (maj 2020): S374—S375. http://dx.doi.org/10.1016/j.biopsych.2020.02.959.
Pełny tekst źródłaNiu, Xin, Fengqing Zhang, John Kounios i Hualou Liang. "Improved prediction of brain age using multimodal neuroimaging data". Human Brain Mapping 41, nr 6 (15.04.2020): 1626–43. http://dx.doi.org/10.1002/hbm.24899.
Pełny tekst źródłaValizadeh, S. A., J. Hänggi, S. Mérillat i L. Jäncke. "Age prediction on the basis of brain anatomical measures". Human Brain Mapping 38, nr 2 (3.11.2016): 997–1008. http://dx.doi.org/10.1002/hbm.23434.
Pełny tekst źródłaHussain, Shah, Shahab Haider, Sarmad Maqsood, Robertas Damaševičius, Rytis Maskeliūnas i Muzammil Khan. "ETISTP: An Enhanced Model for Brain Tumor Identification and Survival Time Prediction". Diagnostics 13, nr 8 (18.04.2023): 1456. http://dx.doi.org/10.3390/diagnostics13081456.
Pełny tekst źródłaLy, Maria, Nishita Muppidi, Helmet Karim, Gary Yu, Akiko Mizuno, William Klunk i Howard Aizenstein. "IMPROVING BRAIN AGE PREDICTION MODELS: INCORPORATION OF AMYLOID STATUS IN ALZHEIMER’S DISEASE". Innovation in Aging 3, Supplement_1 (listopad 2019): S91. http://dx.doi.org/10.1093/geroni/igz038.347.
Pełny tekst źródłaJacob, Yael, Gaurav Verma, Sarah Rutter, Laurel Morris, Priti Balchandani i James Murrough. "P328. Brain Age Prediction Using Functional Brain Network Efficiency in Major Depressive Disorder". Biological Psychiatry 91, nr 9 (maj 2022): S220. http://dx.doi.org/10.1016/j.biopsych.2022.02.564.
Pełny tekst źródłaZhao, Yihong, Arno Klein, F. Xavier Castellanos i Michael P. Milham. "Brain age prediction: Cortical and subcortical shape covariation in the developing human brain". NeuroImage 202 (listopad 2019): 116149. http://dx.doi.org/10.1016/j.neuroimage.2019.116149.
Pełny tekst źródłaSun, Jiancheng, Zongqing Tu, Deqi Meng, Yizhou Gong, Mengmeng Zhang i Jinsong Xu. "Interpretation for Individual Brain Age Prediction Based on Gray Matter Volume". Brain Sciences 12, nr 11 (9.11.2022): 1517. http://dx.doi.org/10.3390/brainsci12111517.
Pełny tekst źródłaHabeck, Christian, Qolamreza Razlighi i Yaakov Stern. "Predictive utility of task-related functional connectivity vs. voxel activation". PLOS ONE 16, nr 4 (8.04.2021): e0249947. http://dx.doi.org/10.1371/journal.pone.0249947.
Pełny tekst źródłaMazher, Moona, Abdul Qayyum, Domenec Puig i Mohamed Abdel-Nasser. "Effective Approaches to Fetal Brain Segmentation in MRI and Gestational Age Estimation by Utilizing a Multiview Deep Inception Residual Network and Radiomics". Entropy 24, nr 12 (23.11.2022): 1708. http://dx.doi.org/10.3390/e24121708.
Pełny tekst źródłaLee, Jeyeon, Brian J. Burkett, Hoon-Ki Min, Matthew L. Senjem, Emily S. Lundt, Hugo Botha, Jonathan Graff-Radford i in. "Deep learning-based brain age prediction in normal aging and dementia". Nature Aging 2, nr 5 (maj 2022): 412–24. http://dx.doi.org/10.1038/s43587-022-00219-7.
Pełny tekst źródłaCai, Huanhuan, Jiajia Zhu i Yongqiang Yu. "Robust prediction of individual personality from brain functional connectome". Social Cognitive and Affective Neuroscience 15, nr 3 (marzec 2020): 359–69. http://dx.doi.org/10.1093/scan/nsaa044.
Pełny tekst źródłaWang, Johnny, Maria J. Knol, Aleksei Tiulpin, Florian Dubost, Marleen de Bruijne, Meike W. Vernooij, Hieab H. H. Adams, M. Arfan Ikram, Wiro J. Niessen i Gennady V. Roshchupkin. "Gray Matter Age Prediction as a Biomarker for Risk of Dementia". Proceedings of the National Academy of Sciences 116, nr 42 (1.10.2019): 21213–18. http://dx.doi.org/10.1073/pnas.1902376116.
Pełny tekst źródłaGuo, Yingying, Xi Yang, Zilong Yuan, Jianfeng Qiu i Weizhao Lu. "A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches". Journal of Neural Engineering 19, nr 1 (1.02.2022): 016013. http://dx.doi.org/10.1088/1741-2552/ac4bfe.
Pełny tekst źródłaKuo, Chen-Yuan, Pei-Lin Lee, Sheng-Che Hung, Li-Kuo Liu, Wei-Ju Lee, Chih-Ping Chung, Albert C. Yang i in. "Large-Scale Structural Covariance Networks Predict Age in Middle-to-Late Adulthood: A Novel Brain Aging Biomarker". Cerebral Cortex 30, nr 11 (23.06.2020): 5844–62. http://dx.doi.org/10.1093/cercor/bhaa161.
Pełny tekst źródłaDeshpande, Prof Deepali, Shravani Bahirat, Vaisnavi Dalvi, Sakshi Darawade i Shravani Jagtap. "Brain Stroke Prediction using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 1093–101. http://dx.doi.org/10.22214/ijraset.2023.51431.
Pełny tekst źródłaWu, Simiao, Ruozhen Yuan, Yanan Wang, Chenchen Wei, Shihong Zhang, Xiaoyan Yang, Bo Wu i Ming Liu. "Early Prediction of Malignant Brain Edema After Ischemic Stroke". Stroke 49, nr 12 (grudzień 2018): 2918–27. http://dx.doi.org/10.1161/strokeaha.118.022001.
Pełny tekst źródłaJusseaume, Kameron, i Iren Valova. "Brain Age Prediction/Classification through Recurrent Deep Learning with Electroencephalogram Recordings of Seizure Subjects". Sensors 22, nr 21 (23.10.2022): 8112. http://dx.doi.org/10.3390/s22218112.
Pełny tekst źródłaMao, Lingchao, Jing Li, Todd J. Schwedt, Visar Berisha, Devin Nikjou, Teresa Wu, Gina M. Dumkrieger, Katherine B. Ross i Catherine D. Chong. "Questionnaire and structural imaging data accurately predict headache improvement in patients with acute post-traumatic headache attributed to mild traumatic brain injury". Cephalalgia 43, nr 5 (maj 2023): 033310242311727. http://dx.doi.org/10.1177/03331024231172736.
Pełny tekst źródłaBaecker, Lea, Rafael Garcia-Dias, Sandra Vieira, Cristina Scarpazza i Andrea Mechelli. "Machine learning for brain age prediction: Introduction to methods and clinical applications". eBioMedicine 72 (październik 2021): 103600. http://dx.doi.org/10.1016/j.ebiom.2021.103600.
Pełny tekst źródłaHan, Hongfang, Sheng Ge i Haixian Wang. "Prediction of brain age based on the community structure of functional networks". Biomedical Signal Processing and Control 79 (styczeń 2023): 104151. http://dx.doi.org/10.1016/j.bspc.2022.104151.
Pełny tekst źródłaLy, Maria, Gary Z. Yu, Helmet T. Karim, Nishita R. Muppidi, Akiko Mizuno, William E. Klunk i Howard J. Aizenstein. "Improving brain age prediction models: incorporation of amyloid status in Alzheimer's disease". Neurobiology of Aging 87 (marzec 2020): 44–48. http://dx.doi.org/10.1016/j.neurobiolaging.2019.11.005.
Pełny tekst źródłaMonti, Ricardo Pio, Alex Gibberd, Sandipan Roy, Matthew Nunes, Romy Lorenz, Robert Leech, Takeshi Ogawa, Motoaki Kawanabe i Aapo Hyvärinen. "Interpretable brain age prediction using linear latent variable models of functional connectivity". PLOS ONE 15, nr 6 (10.06.2020): e0232296. http://dx.doi.org/10.1371/journal.pone.0232296.
Pełny tekst źródłaRichard, Geneviève, Knut Kolskår, Anne-Marthe Sanders, Tobias Kaufmann, Anders Petersen, Nhat Trung Doan, Jennifer Monereo Sánchez i in. "Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry". PeerJ 6 (30.11.2018): e5908. http://dx.doi.org/10.7717/peerj.5908.
Pełny tekst źródłaHellstrøm, Torgeir, Nada Andelic, Ann-Marie G. de Lange, Eirik Helseth, Kristin Eiklid i Lars T. Westlye. "Apolipoprotein ɛ4 Status and Brain Structure 12 Months after Mild Traumatic Injury: Brain Age Prediction Using Brain Morphometry and Diffusion Tensor Imaging". Journal of Clinical Medicine 10, nr 3 (22.01.2021): 418. http://dx.doi.org/10.3390/jcm10030418.
Pełny tekst źródłaNygate, Yoav, Sam Rusk, Chris Fernandez, Nick Glattard, Jessica Arguelles, Jiaxiao Shi, Dennis Hwang i Nathaniel Watson. "543 EEG-Based Deep Neural Network Model for Brain Age Prediction and Its Association with Patient Health Conditions". Sleep 44, Supplement_2 (1.05.2021): A214. http://dx.doi.org/10.1093/sleep/zsab072.541.
Pełny tekst źródłaVerscheijden, Laurens F. M., Carlijn H. C. Litjens, Jan B. Koenderink, Ron H. J. Mathijssen, Marcel M. Verbeek, Saskia N. de Wildt i Frans G. M. Russel. "Physiologically based pharmacokinetic/pharmacodynamic model for the prediction of morphine brain disposition and analgesia in adults and children". PLOS Computational Biology 17, nr 3 (4.03.2021): e1008786. http://dx.doi.org/10.1371/journal.pcbi.1008786.
Pełny tekst źródłaSun, H., K. Dunham, L. Cunningham, Y. Ni, M. Westover i R. Thomas. "0348 Sleep EEG-Based Brain Age Index is Reduced Under Continuous Positive Airway Pressure Treatment". Sleep 43, Supplement_1 (kwiecień 2020): A132. http://dx.doi.org/10.1093/sleep/zsaa056.345.
Pełny tekst źródłaRomagnosi, Federico, Adriano Bernini, Filippo Bongiovanni, Carolina Iaquaniello, John-Paul Miroz, Giuseppe Citerio, Fabio Silvio Taccone i Mauro Oddo. "Neurological Pupil Index for the Early Prediction of Outcome in Severe Acute Brain Injury Patients". Brain Sciences 12, nr 5 (6.05.2022): 609. http://dx.doi.org/10.3390/brainsci12050609.
Pełny tekst źródłaSimfukwe, Chanda, i Young Chul Youn. "Prediction of East Asian Brain Age using Machine Learning Algorithms Trained With Community-based Healthy Brain MRI". Dementia and Neurocognitive Disorders 21, nr 4 (2022): 138. http://dx.doi.org/10.12779/dnd.2022.21.4.138.
Pełny tekst źródłaHolm, Madelene C., Esten H. Leonardsen, Dani Beck, Andreas Dahl, Rikka Kjelkenes, Ann-Marie G. de Lange i Lars T. Westlye. "Linking brain maturation and puberty during early adolescence using longitudinal brain age prediction in the ABCD cohort". Developmental Cognitive Neuroscience 60 (kwiecień 2023): 101220. http://dx.doi.org/10.1016/j.dcn.2023.101220.
Pełny tekst źródłaBallester, Pedro L., Laura Tomaz da Silva, Matheus Marcon, Nathalia Bianchini Esper, Benicio N. Frey, Augusto Buchweitz i Felipe Meneguzzi. "Predicting Brain Age at Slice Level: Convolutional Neural Networks and Consequences for Interpretability". Frontiers in Psychiatry 12 (25.02.2021). http://dx.doi.org/10.3389/fpsyt.2021.598518.
Pełny tekst źródłaKuo, Chen-Yuan, Tsung-Ming Tai, Pei-Lin Lee, Chiu-Wang Tseng, Chieh-Yu Chen, Liang-Kung Chen, Cheng-Kuang Lee, Kun-Hsien Chou, Simon See i Ching-Po Lin. "Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework". Frontiers in Psychiatry 12 (23.03.2021). http://dx.doi.org/10.3389/fpsyt.2021.626677.
Pełny tekst źródłaGong, Weikang, Christian F. Beckmann, Andrea Vedaldi, Stephen M. Smith i Han Peng. "Optimising a Simple Fully Convolutional Network for Accurate Brain Age Prediction in the PAC 2019 Challenge". Frontiers in Psychiatry 12 (10.05.2021). http://dx.doi.org/10.3389/fpsyt.2021.627996.
Pełny tekst źródłaNiu, Xin, Alexei Taylor, Russell T. Shinohara, John Kounios i Fengqing Zhang. "Multidimensional Brain-Age Prediction Reveals Altered Brain Developmental Trajectory in Psychiatric Disorders". Cerebral Cortex, 30.01.2022. http://dx.doi.org/10.1093/cercor/bhab530.
Pełny tekst źródłaHong, Jinwoo, Hyuk Jin Yun, Gilsoon Park, Seonggyu Kim, Yangming Ou, Lana Vasung, Caitlin K. Rollins i in. "Optimal Method for Fetal Brain Age Prediction Using Multiplanar Slices From Structural Magnetic Resonance Imaging". Frontiers in Neuroscience 15 (11.10.2021). http://dx.doi.org/10.3389/fnins.2021.714252.
Pełny tekst źródłaHsu, Yi-Fang, Florian Waszak, Juho Strömmer i Jarmo A. Hämäläinen. "Human Brain Ages With Hierarchy-Selective Attenuation of Prediction Errors". Cerebral Cortex, 1.12.2020. http://dx.doi.org/10.1093/cercor/bhaa352.
Pełny tekst źródłaGanaie, M. A., M. Tanveer i Iman Beheshti. "Brain age prediction using improved twin SVR". Neural Computing and Applications, 7.01.2022. http://dx.doi.org/10.1007/s00521-021-06518-1.
Pełny tekst źródłaFang, Keke, Shaoqiang Han, Yuming Li, Jing Ding, Jilian Wu i Wenzhou Zhang. "The Vital Role of Central Executive Network in Brain Age: Evidence From Machine Learning and Transcriptional Signatures". Frontiers in Neuroscience 15 (7.09.2021). http://dx.doi.org/10.3389/fnins.2021.733316.
Pełny tekst źródłaAnatürk, Melis, Tobias Kaufmann, James H. Cole, Sana Suri, Ludovica Griffanti, Enikő Zsoldos, Nicola Filippini i in. "Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging". Human Brain Mapping, 14.12.2020. http://dx.doi.org/10.1002/hbm.25316.
Pełny tekst źródłaBallester, Pedro L., Jee Su Suh, Natalie C. W. Ho, Liangbing Liang, Stefanie Hassel, Stephen C. Strother, Stephen R. Arnott i in. "Gray matter volume drives the brain age gap in schizophrenia: a SHAP study". Schizophrenia 9, nr 1 (9.01.2023). http://dx.doi.org/10.1038/s41537-022-00330-z.
Pełny tekst źródła