Gotowa bibliografia na temat „BoxcarSS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „BoxcarSS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "BoxcarSS"
Stine, Peter. "Boxcars, 1974". Iowa Review 32, nr 3 (grudzień 2002): 94–98. http://dx.doi.org/10.17077/0021-065x.5604.
Pełny tekst źródłaKate Flaherty. "Boxcars and Books". Prairie Schooner 84, nr 3 (2010): 28–31. http://dx.doi.org/10.1353/psg.2010.0037.
Pełny tekst źródłaRomanov, D., A. Filin, R. Compton i R. Levis. "Phase matching in femtosecond BOXCARS". Optics Letters 32, nr 21 (24.10.2007): 3161. http://dx.doi.org/10.1364/ol.32.003161.
Pełny tekst źródłaWarning, Nathanial. "Rock wren transport in railroad boxcars". Southwestern Naturalist 61, nr 3 (wrzesień 2016): 203–9. http://dx.doi.org/10.1894/0038-4909-61.3.203.
Pełny tekst źródłaMuller, Squier, De Lange i Brakenhoff. "CARS microscopy with folded BoxCARS phasematching". Journal of Microscopy 197, nr 2 (luty 2000): 150–58. http://dx.doi.org/10.1046/j.1365-2818.2000.00648.x.
Pełny tekst źródłaGreene, G. J., G. Cutsogeorge i M. Ono. "Boxcar photography". Review of Scientific Instruments 60, nr 8 (sierpień 1989): 2690–96. http://dx.doi.org/10.1063/1.1140693.
Pełny tekst źródłaRoland, Thomas, Vincent Kemlin, Julien Nillon, Jean-Sébastien Pellé, Olivier Crégutt, Johanna Brazard, Jérémie Léonard i Stefan Haacke. "BOXCARS-geometry 2DES setup in the 300-340nm range with pulse-to-pulse phase correction at 50kHz". EPJ Web of Conferences 205 (2019): 01009. http://dx.doi.org/10.1051/epjconf/201920501009.
Pełny tekst źródłaDoerk, T., J. Ehlbeck, P. Jauernik, J. Stańco, J. Uhlenbusch i T. Wottka. "Narrow-band BoxCARS applied to CO2 laser discharges". Il Nuovo Cimento D 14, nr 10 (październik 1992): 1051–63. http://dx.doi.org/10.1007/bf02455367.
Pełny tekst źródłaLestari, Anugrah I., Dony Kushardono i Athar A. Bayanuddin. "Burned area detection using convolutional neural network based on spatial information of synthetic aperture radar data in Indonesia". GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 17, nr 2 (5.07.2024): 36–48. http://dx.doi.org/10.24057/2071-9388-2024-3109.
Pełny tekst źródłaFomin, O. V., i A. O. Lovska. "Determination of vertical dynamics for a standard Ukrainian boxcar with Y25 bogies". Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, nr 5 (2020): 67–72. http://dx.doi.org/10.33271/nvngu/2021-5/067.
Pełny tekst źródłaRozprawy doktorskie na temat "BoxcarSS"
Richardson, Malin, i Unn Sandell. "Motorsimulering av CAN-buss : Boxcar 9-5". Thesis, University West, Department of Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-337.
Pełny tekst źródłaSjölund, Göran, i Stefan Petersson. "Uppbyggnad av ett fordons kompletta elsystem". Thesis, University West, Department of Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-363.
Pełny tekst źródłaKhaowong, Samorn. "Comparing different methods of the Escalator Boxcar Train based on the Daphnia model". Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-26558.
Pełny tekst źródłaLocci-Lopez, Daniel Eduardo. "Permian Basin Reservoir Quantitative Interpretation Applying the Multi-Scale Boxcar Transform Spectral Decomposition". Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10816133.
Pełny tekst źródłaThe Short Time Fourier transform and the S-transform are among the most used methods of spectral decomposition to localize spectra in time and frequency. The S-transform utilizes a frequency-dependent Gaussian analysis window that is normalized for energy conservation purposes. The STFT, on the other hand, has a selected fixed time window that does not depend on frequency. In previous literature, it has been demonstrated that the S-transform distorts the Fourier spectra, shifting frequency peaks, and could result in misleading frequency attributes. Therefore, one way of making the S-transform more appropriate for quantitative seismic signal analysis is to ignore the conservation of energy over time requirement. This suggests a hybrid approach between the Short Time Fourier transform and the S-transform for seismic interpretation purposes. In this work, we introduce the Multi-Scale Boxcar transform that has temporal resolution comparable to the S-transform while giving correct Fourier peak frequencies. The Multi-Scale Boxcar transform includes a special analysis window that focusses the analysis on the highest amplitude portion of the Gaussian window, giving a more accurate time-frequency representation of the spectra in comparison with the S-transform. Post-stack seismic data with a strong well logs control was used to demonstrate the differences of the Multi-Scale Boxcar transform and the S-transform. The analysis area in this work is the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play in the Midland Basin, a sub-basin in the larger Permian Basin. The Multi-Scale Boxcar transform spectral decomposition method improved the seismic interpretation of the study area, showing better temporal resolution for resolving the layered reservoirs? heterogeneity. The time and depth scale values on the figures are shifted according to the sponsor request, but the relative scale is correct.
Meier, Steffen Marius [Verfasser], Uwe [Gutachter] Czarnetzki i Horst [Gutachter] Fichtner. "Plasmadichtebestimmung mittels Dual-Frequency-Multichannel-Boxcar-THz-Time-Domain-Spektroskopie / Steffen Marius Meier ; Gutachter: Uwe Czarnetzki, Horst Fichtner ; Fakultät für Physik und Astronomie". Bochum : Ruhr-Universität Bochum, 2018. http://d-nb.info/1161942327/34.
Pełny tekst źródłaIaconianni, Sara. "Caratterizzazione di dispositivi a giunzione tramite Deep Level Transient Spectroscopy (DLTS)". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14216/.
Pełny tekst źródłaMonteiro, João André de Matos. "Implementation and evaluation of different scaling methods in single scatter simulation for the siemens brainPET scanner". Master's thesis, 2012. http://hdl.handle.net/10451/7853.
Pełny tekst źródłaA Tomografia por Emissão de Positrões (PET, do Inglês Positron Emission Tomography) trata-se de uma técnica de medicina nuclear a qual é bastante importante no diagnóstico de diversas patologias. Utiliza radiofármacos com um tempo de meia-vida curto, de modo a obter uma imagem de emissão. A taxa de absorção do radiofármaco varia de acordo com o tipo de tecido. Este fenómeno é especialmente importante no diagnóstico de cancro, uma vez que o metabolismo das células tumorais é superior, o que resulta numa maior taxa de absorção do radiofármaco por parte destas células, comparativamente com as células saudáveis. Este fenómeno permite a aquisição de uma imagem funcional. Tal como o nome indica, a PET baseia-se na emissão de positrões pelos radionuclídeos. Cada positrão irá aniquilar-se com um electrão, produzindo dois fotões de 511 keV, os quais são detectados pelo sistema de PET e utilizados para reconstruir uma imagem da distribuição do radiofármaco. A qualidade da imagem é influenciada por vários factores, sendo a dispersão de Compton um dos mais importantes. Este fenómeno provoca uma deflexão na trajectória original dos fotões, resultando na deterioração do contraste da imagem. Actualmente, é possível estimar a quantidade de eventos detectados pelo sistema de PET que sofreram dispersão de Compton e corrigir os dados adquiridos. Vários métodos foram propostos ao longo dos anos para corrigir os dados, sendo bastante utilizados os algoritmos baseados em modelos físicos. Dentro destes, um dos mais importantes é o Single Scatter Simulation (SSS), o qual permite estimar a distribuição de eventos dispersos por interacções de Compton e representar os resultados em sinogramas de dispersão. Contudo, estes sinogramas não se encontram escalados, sendo este passo executado separadamente. Os métodos de escalamento utilizam as contagens detectadas fora do objecto que foi medido (conhecidas como scatter tails) como referência. Um dos problemas relacionados com o escalamento advém do facto destas regiões possuírem contagens muito baixas, o que as torna susceptíveis a ruído de Poisson, dificultando a estimação do factor de escalamento correcto. Este projecto fez uso de dados adquiridos e simulados para o scanner BrainPET da Siemens instalado no Forschungszentrum Jülich. Actualmente, o escalamento dos sinogramas de dispersão é feito utilizando os pacotes de software disponibilizados pelo fabricante, os quais demonstraram resultados razoáveis podendo, no entanto, ser melhorados. O objectivo principal deste trabalho consiste na implementação e avaliação de diversos métodos de escalamento dos sinogramas de dispersão, tanto novos como previamente existentes, tendo em vista melhorar o passo de escalamento do SSS. Isto permitirá uma melhor correcção do efeito da dispersão de Compton nos dados, melhorando a qualidade das imagems de PET. Foram também testados em dados simulados, diversos factores que podem introduzir erros no escalamento dos sinogramas de dispersão, de modo a documentar a sua influência na imagem reconstruída. Os factores testados foram o escalamento incorrecto dos sinogramas de dispersão e o escalamento incorrecto dos sinogramas de eventos aleatórios. Foi também testada a utilização de uma imagem corrigida para atenuação e eventos aleatórios para a estimação dos sinogramas de dispersão em vez de um fantoma gerado matematicamente. No capítulo 2 são introduzidos os conceitos físicos básicos necessários à compreensão do funcionamento dos sistemas de PET. São também expostos os diferentes procedimentos utilizados para adquirir, organizar e corrigir dados, bem como alguns algoritmos de reconstrução. O capítulo 3 foca-se na descrição do scanner BrainPET, nos métodos que foram implementados para escalar os sinogramas de dispersão e nos processos necessários para adquirir os dados utilizados, tanto reais como simulados. Os dados simulados foram adquiridos gerando três conjuntos de sinogramas (sinogramas de eventos verdadeiros não-dispersos, sinogramas de eventos aleatórios e sinogramas de dispersão), somando-os e introduzindo ruído de Poisson. Estes dados foram divididos em cinco grupos, consoante o número de eventos verdadeiros não-dispersados: 1 × 106, 1 × 107, 1 × 108, 1 × 109 e 1 × 1010. Esta divisão permitiu estudar o comportamento de cada método de escalamento a diferentes níveis estatísticos. Os dados reais foram adquiridos utilizando um fantoma cilíndrico com uma concentração uniforme de 18F. Foram implementados três métodos de escalamento. O primeiro, denominado de Standard, é actualmente utilizado no Forschungszentrum Jülich. O segundo, é bastante semelhante ao Standard, mas utiliza os dados sem aplicar pré-correcção, designando-se Non Pre-Corrected Data (NPCD) scaling method. O terceiro, aborda o escalamento de uma maneira diferente dos outros dois, denomina-se Maximum Likelihood (ML) scaling method e tem em conta o ruído de Poisson na estimação do factor de escalamento. resultados mostraram que para o método Standard e para o método NPCD não parece existir nenhuma vantagem em usar PI em vez do filtro boxcar actualmente utilizado. Contudo, aquando da utilização do método ML, a PI conferiu uma melhoria de cerca de 1% em relação ao filtro boxcar a todos os níveis estatísticos. Todos os métodos de escalamento demonstraram um comportamento semelhante à introdução de erros nos dados. A influência de cada fonte de erros foi estudada de modo a verificar o seu efeito na imagem reconstruída. Os resultados deverão demonstrar-se úteis como referência futura, caso seja necessário identificar uma fonte de erro nos dados. Apesar dos resultados positivos adquiridos no escalamento, os procedimentos de reconstrução não foram tão bem sucedidos. Estes demonstraram ser tendenciosos caso a estimação dos sinogramas de dispersão não seja feita com o fantoma gerado matematicamente. Este problema pode ser resolvido em dados simulados caso a estimação dos sinogramas de dispersão e reconstrução sejam efectuados várias vezes, mesmo para fracções de dispersão de Compton superiores ou em objectos mais complexos do que um cilindro uniforme. Os dados reais adquiridos com o fantoma cilíndrico foram reconstruídos utilizando o procedimento de rotina, demonstrando os mesmos problemas. Contudo, neste caso a repetição da estimação dos sinogramas de dispersão e reconstrução não resolveram o problema. Ao contrário do que foi observado em dados simulados, a estimação dos sinogramas de dispersão com uma imagem de um cilindro uniforme não resultou numa imagem não tendenciosa. Sendo que nestes dados não foi possível reconstruir uma imagem não tendenciosa, nem pela utilização do fantoma para estimar os sinogramas de dispersão nem pela repetição da estimação e reconstrução. Isto pode ser devido ao facto do SSS não considerar casos de dispersão múltipla, em que um ou ambos os fotões são dispersados mais do que uma vez por interacções de Compton. Os resultados mostrados nas secções 4.1.1 e 4.1.2 sugerem que a utilização do método ML com PI pode ser uma boa alternativa ao método actualmente utilizado. Contudo, devem ser realizados mais estudos, tanto com dados simulados como com dados reais. Actualmente existe um toolkit desenvolvido no Forschungszentrum Jülich denomidado PET REconstruction Software TOolkit (PRESTO). Caso o método ML continue a mostrar melhores resultados que o método utilizado actualmente, este poderá ser implementado em versões futuras do PRESTO, permitindo um melhor escalamento dos sinogramas de dispersão e, consequentemente, contribuir para melhorar a qualidade das imagens de PET.
Compton scattering degrades image contrast in PET, being one of the main phenomena that affects image quality. Several algorithms have been proposed to correct the data. One of the most prominent algorithms is the SSS, which provides no absolute values, but predicts the slope of the scatter distribution. This slope has to be scaled using the scatter tails as reference. However, these have very low counts, thus giving large uncertainties to determine the scatter component. The aim of this project is to implement and evaluate new and existing scatter scaling methods, in order to improve the scaling step of the SSS. Two scatter scaling methods were proposed (the NPCD and the ML methods) and compared with the method currently used in the data from the BrainPET scanner (Standard method). The methods were compared in a single sonogram plane and using multiple sinogram planes in combination with a boxcar filter or Plane Integration (PI). Also, different error sources were investigated in the data to test how they influence the scatter estimation and scaling. The scatter correction procedures were tested with simulated and real data. For a single sinogram plane, both methods performed better than the Standard method. The scaling factors were calculated multiple times using the three methods and the distributions were studied. The standard deviations acquired using the proposed methods have shown a reduction of 4% (NPCD) and 13% (ML), relative to the Standard method. The standard deviation of the ML method can be further reduced by 1% if PI is used instead of the currently used boxcar filter. The reduction in the standard deviations of the distributions indicates that the proposed methods are more accurate. All the scaling methods behaved in the same way with respect to errors in the data.
Książki na temat "BoxcarSS"
Neubauer, Eric A. FMC boxcars since 1972. [Monrovia? Calif.]: Modern Transport Technical & Historical Society, 1985.
Znajdź pełny tekst źródłaLee, Y. S. Boxcar riders. Markham, ON: Scholastic, 2007.
Znajdź pełny tekst źródłaill, Dubisch Michael, i Warner Gertrude Chandler 1890-1979, red. Boxcar children. Edina, MN: Magic Wagon, 2009.
Znajdź pełny tekst źródłaField, Barbara. The boxcar children. Seattle, WA: Seattle Children's Theatre, 1999.
Znajdź pełny tekst źródłaWarner, Gertrude Chandler. The Boxcar Children. New York: Scholastic, 1989.
Znajdź pełny tekst źródłaWarner, Gertrude Chandler. Benny's boxcar sleepover. Morton Grove, Ill: A. Whitman, 2004.
Znajdź pełny tekst źródłaWarner, Gertrude Chandler. The Boxcar children. Wyd. 6. Morton Grove, Ill: A. Whitman, 2002.
Znajdź pełny tekst źródłaYoung, David. Boxcars. Ecco Press, 2000.
Znajdź pełny tekst źródłaBoxcars. CreateSpace Independent Publishing Platform, 2013.
Znajdź pełny tekst źródłaStock, Rhonda Leanne. Blood and Boxcars. Independently Published, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "BoxcarSS"
Owsiak, Andrew P., J. Michael Greig i Paul F. Diehl. "Making trains from boxcars: studying conflict and conflict management interdependencies". W International Conflict and Conflict Management, 1–22. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003380832-1.
Pełny tekst źródłaGrist, Leighton. "Exploitation Cinema and the Youth Market: Boxcar Bertha". W The Films of Martin Scorsese, 1963–77, 43–60. London: Palgrave Macmillan UK, 2000. http://dx.doi.org/10.1057/9780230286146_4.
Pełny tekst źródłaDe, A., i J. Metz. "Towards a Numerical Analysis of the Escalator Boxcar Train". W Differential Equations with Applications in Biology, Physics, and Enqineering, 91–114. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315141244-8.
Pełny tekst źródłaGoetz, Renan, Natali Hritonenko, Angels Xabadia i Yuri Yatsenko. "Using the Escalator Boxcar Train to Determine the Optimal Management of a Size-Distributed Forest When Carbon Sequestration Is Taken into Account". W Large-Scale Scientific Computing, 334–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78827-0_37.
Pełny tekst źródłaFerrell, Jeff. "Freedom in the Form of a Boxcar". W Drift. University of California Press, 2018. http://dx.doi.org/10.1525/california/9780520295544.003.0006.
Pełny tekst źródła"BOXCARS COMING". W Arizona's War Town, 53–76. University of Arizona Press, 2003. http://dx.doi.org/10.2307/j.ctv1kchp7k.9.
Pełny tekst źródła"Boxcar Design". W Encyclopedia of Pain, 288. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_100225.
Pełny tekst źródła"boxcar, n." W Oxford English Dictionary. Wyd. 3. Oxford University Press, 2023. http://dx.doi.org/10.1093/oed/1800940509.
Pełny tekst źródłaSharifi-Razavi, Athena, Amir Moghadam Ahmadi i Ashkan Mowla. "Boxcar ventricle". W Pictorial Atlas of Neuroradiological Signs, 120–21. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-443-23528-3.00058-3.
Pełny tekst źródła"THE BOXCARS OF CONSOLIDATED RAIL FREIGHT". W Green Squall, 9–10. Yale University Press, 2017. http://dx.doi.org/10.12987/9780300129649-007.
Pełny tekst źródłaStreszczenia konferencji na temat "BoxcarSS"
Danesh-Yazdi, Amir, Oleg Goushcha, Niell Elvin i Yiannis Andreopoulos. "Train of Frozen Boxcars Model for Fluidic Harvesters". W 47th AIAA Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-3811.
Pełny tekst źródłaFunk, David J., Byron A. Palmer i Richard Oldenborg. "CARS as a spectroscopic probe of a methyl chloride-air flat flame". W Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/laca.1992.tub2.
Pełny tekst źródłaSezer, Osman G., i Yucel Altunbasak. "Adaptive boxcar/wavelet transform". W IS&T/SPIE Electronic Imaging, redaktorzy Majid Rabbani i Robert L. Stevenson. SPIE, 2009. http://dx.doi.org/10.1117/12.806166.
Pełny tekst źródłaZhao, Shuo-Yan, Yan Shao i Pei-Lin Zhang. "Temperature and concentration measurements of NO gas by folded BOXCARS". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tucc6.
Pełny tekst źródłaSochor, Jakub, Adam Herout i Jiri Havel. "BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition". W 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.328.
Pełny tekst źródłaDanesh-Yazdi, Amir, Oleg Goushcha, Niell Elvin i Yiannis Andreopoulos. "Fluidic harvester under train of frozen boxcars (TFB) loading: a parametric study". W Active and Passive Smart Structures and Integrated Systems XII, redaktor Alper Erturk. SPIE, 2018. http://dx.doi.org/10.1117/12.2299963.
Pełny tekst źródłaYeow, Kin-Woon, i Matthias Becker. "JIS: Pest Population Prognosis with Escalator Boxcar Train". W 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2018. http://dx.doi.org/10.1109/ieem.2018.8607724.
Pełny tekst źródłaZhong, Dinghua, Kun Song i Kao Wang. "Design of a Bidirectional Belt Conveyor for Boxcar". W 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mmebc-16.2016.223.
Pełny tekst źródłaSamolis, Panagis D., Xuedong Zhu i Michelle Y. Sander. "Boxcar gating for time-resolved mid-infrared photothermal imaging of axon-bundle water boundaries". W CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.atu4q.4.
Pełny tekst źródłaLi, Zhengzhi, Jianzhong Wu, Yongan Tang i Zhiwei Tian. "Laser-induced fluorescence spectra of tea and bamboo leaves". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.mr.6.
Pełny tekst źródłaRaporty organizacyjne na temat "BoxcarSS"
Greene, G. J., G. Cutsogeorge i M. Ono. Boxcar photography. Office of Scientific and Technical Information (OSTI), lipiec 1987. http://dx.doi.org/10.2172/6169434.
Pełny tekst źródłaSeigler, R. S. Norfolk Southern boxcar blocking/bracing plan for the mixed waste disposal initiative project. Environmental Restoration Program. Office of Scientific and Technical Information (OSTI), styczeń 1994. http://dx.doi.org/10.2172/10132019.
Pełny tekst źródłaForklift operator is crushed by a roll of paper when it falls out of a railroad boxcar in California. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, październik 1997. http://dx.doi.org/10.26616/nioshsface97ca007.
Pełny tekst źródła