Gotowa bibliografia na temat „Bounded Symmetric domain”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Bounded Symmetric domain”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Bounded Symmetric domain"
ROOS, Guy. "Bergman–Hartogs domains and their automorphisms". Tambov University Reports. Series: Natural and Technical Sciences, nr 127 (2019): 316–23. http://dx.doi.org/10.20310/2686-9667-2019-24-127-316-323.
Pełny tekst źródłaBERSHTEIN, OLGA. "REGULAR FUNCTIONS ON THE SHILOV BOUNDARY". Journal of Algebra and Its Applications 04, nr 06 (grudzień 2005): 613–29. http://dx.doi.org/10.1142/s0219498805001447.
Pełny tekst źródłaRamachandran, C., R. Ambrose Prabhu i Srikandan Sivasubramanian. "Starlike and convex functions with respect to symmetric conjugate points involving conical domain". Mathematica Slovaca 68, nr 1 (23.02.2018): 89–102. http://dx.doi.org/10.1515/ms-2017-0083.
Pełny tekst źródłaDi Scala, Antonio J., Andrea Loi i Guy Roos. "The Bisymplectomorphism Group of a Bounded Symmetric Domain". Transformation Groups 13, nr 2 (czerwiec 2008): 283–304. http://dx.doi.org/10.1007/s00031-008-9015-z.
Pełny tekst źródłaMackey i Mellon. "The Bergmann-Shilov boundary of a Bounded Symmetric Domain". Mathematical Proceedings of the Royal Irish Academy 121A, nr 2 (2021): 33. http://dx.doi.org/10.3318/pria.2021.121.03.
Pełny tekst źródłaMackey, M., i P. Mellon. "The Bergmann-Shilov boundary of a Bounded Symmetric Domain". Mathematical Proceedings of the Royal Irish Academy 121, nr 2 (2021): 33–49. http://dx.doi.org/10.1353/mpr.2021.0002.
Pełny tekst źródłaChoi, Ki-Seong. "NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN". Communications of the Korean Mathematical Society 22, nr 1 (31.01.2007): 65–74. http://dx.doi.org/10.4134/ckms.2007.22.1.065.
Pełny tekst źródłaPAN, LISHUANG, AN WANG i LIYOU ZHANG. "ON THE KÄHLER–EINSTEIN METRIC OF BERGMAN–HARTOGS DOMAINS". Nagoya Mathematical Journal 221, nr 1 (marzec 2016): 184–206. http://dx.doi.org/10.1017/nmj.2016.4.
Pełny tekst źródłaNeidhardt, H., i V. A. Zagrebnov. "Does Each Symmetric Operator Have a Stability Domain?" Reviews in Mathematical Physics 10, nr 06 (sierpień 1998): 829–50. http://dx.doi.org/10.1142/s0129055x98000276.
Pełny tekst źródłaWu, Hio Tong, Ieng Tak Leong i Tao Qian. "Adaptive rational approximation in Bergman space on bounded symmetric domain". Journal of Mathematical Analysis and Applications 506, nr 1 (luty 2022): 125591. http://dx.doi.org/10.1016/j.jmaa.2021.125591.
Pełny tekst źródłaRozprawy doktorskie na temat "Bounded Symmetric domain"
Schilling, René L., i Toshihiro Uemura. "On the Structure of the Domain of a Symmetric Jump-type Dirichlet Form". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-145198.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Schilling, René L., i Toshihiro Uemura. "On the Structure of the Domain of a Symmetric Jump-type Dirichlet Form". EMS Publishing House, 2012. https://tud.qucosa.de/id/qucosa%3A28135.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
涂振漢 i Zhenhan Tu. "Rigidity of proper holomorphic mappings between bounded symmetric domains". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B42575643.
Pełny tekst źródłaTu, Zhenhan. "Rigidity of proper holomorphic mappings between bounded symmetric domains". Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B42575643.
Pełny tekst źródłaMckenzie, Daniel. "On uniformization of compact Kähler manifolds with negative first chern class by bounded symmetric domains". Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/9609.
Pełny tekst źródłaWe consider two complementary problems: given a compact Kähler manifold with negative first Chern Class, when is its universal cover a Bounded Symmetric Domain? And if it is, which Bounded Symmetric Domain is it? Existing literature is discussed, with particular attention given to two recent papers of Catanese and Di Scala ([CDS12] and [CDS]) which answer both questions first for Bounded Symmetric Domains of Tube Type, and then for all Bounded Symmetric Domains without Ball Factors. Using work of Yau and others on ball quotients we extend the main result of [CDS] to all bounded Symmetric Domains, including those with ball factors, thus answering the two questions posed in full generality.
Cadorel, Benoît. "Hyperbolicité complexe et quotients de domaines symétriques bornés". Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0198.
Pełny tekst źródłaThis work deals with the study of complex hyperbolicity of compactifications of quotients of bounded symmetric domains, and more specifically, of quotients of the ball. We are interested in the geometry of the entire curves such a compactification contains, as well as to the type of its subvarietes. We first prove a metric criterion for the positivity of the cotangent bundle of a complex manifold, based in particular on the work of J.-P. Demailly and of S. Boucksom. This criterion can be applied to a large class of manifolds, going beyond the previous frame; with Y. Brunebarbe, we apply in particular these methods to the case of manifolds supporting a complex variation of Hodge structures.In the case of a ball quotient, the criterion shows that on a ramified cover of a toroidal compactification, étale on the inside part, and ramifying at orders higher than 7 on the boundary, there is no subvariety which is not of general type, and not included in the boundary. In this setting, this gives an effective version of a theorem of Y. Brunebarbe. We also study other situations than these smooth compactifications : with E. Rousseau and B. Taji, we give metric criterions for the complex hyperbolicity of these compactifications, if the quotients are singular. In the case of the ball, we present also an effective version of a theorem of J.-P. Demailly, concerning the bigness of the Green-Griffiths jet differentials on the given compactification. Finally, we show that the previous metric methods can be applied to the case of all bounded symmetric domains ; they give effective hyperbolicity results, algebraic and transcendental, for other bounded symmetric domains than the ball
MOSSA, ROBERTO. "Balanced metrics on complex vector bundles and the diastatic exponential of a symmetric space". Doctoral thesis, Università degli Studi di Cagliari, 2011. http://hdl.handle.net/11584/266274.
Pełny tekst źródłaSaldaña, de Fuentes Alberto [Verfasser], Tobias [Akademischer Betreuer] Weth i Nils [Akademischer Betreuer] Ackermann. "Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains / Alberto Saldaña De Fuentes. Gutachter: Tobias Weth ; Nils Ackermann. Betreuer: Tobias Weth". Frankfurt am Main : Univ.-Bibliothek Frankfurt am Main, 2014. http://d-nb.info/1053704186/34.
Pełny tekst źródłaPramanick, Paramita. "Trace Estimate For The Determinant Operator And K- Homogeneous Operators". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4872.
Pełny tekst źródłaYang, Chi-Ru, i 楊其儒. "Multiple solutions and its stability in a bounded symmetry domain". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/15295097185650383645.
Pełny tekst źródła國立清華大學
數學系
92
In this article, we prove that there are three positive solutions of a semilinear elliptic equation in a bounded symmetric domain Dt for large t > 0 in which one is axially symmetric and the other two are nonaxially symmetric. Moreover, we prove that these three solutions are unstable.
Książki na temat "Bounded Symmetric domain"
Quantum bounded symmetric domains. Providence, R.I: American Mathematical Society, 2010.
Znajdź pełny tekst źródłaChristensen, Jens Gerlach. Trends in harmonic analysis and its applications: AMS special session on harmonic analysis and its applications : March 29-30, 2014, University of Maryland, Baltimore County, Baltimore, MD. Providence, Rhode Island: American Mathematical Society, 2015.
Znajdź pełny tekst źródłaJordan Triple Systems in Complex and Functional Analysis. American Mathematical Society, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Bounded Symmetric domain"
Friedman, Yaakov, i Tzvi Scarr. "The classical bounded symmetric domains". W Physical Applications of Homogeneous Balls, 153–93. Boston, MA: Birkhäuser Boston, 2005. http://dx.doi.org/10.1007/978-0-8176-8208-8_4.
Pełny tekst źródłaKoranyi, A. "Holomorphic and Harmonic Functions on Bounded Symmetric Domains". W Geometry of Homogeneous Bounded Domains, 125–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11060-3_4.
Pełny tekst źródłaChu, Cho-Ho. "Jordan Structures in Bounded Symmetric Domains". W Springer INdAM Series, 43–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73126-1_4.
Pełny tekst źródłaZhu, Kehe. "Harmonic Analysis on Bounded Symmetric Domains". W Harmonic Analysis in China, 287–307. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0141-7_17.
Pełny tekst źródłaHonda, Tatsuhiro. "Bloch Mappings on Bounded Symmetric Domains". W Trends in Mathematics, 49–70. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4337-6_3.
Pełny tekst źródłaKim, Sung-Yeon. "Proper Holomorphic Maps Between Bounded Symmetric Domains". W Complex Analysis and Geometry, 207–19. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55744-9_15.
Pełny tekst źródłaSeo, Aeryeong. "Proper Holomorphic Maps Between Bounded Symmetric Domains". W Complex Analysis and Geometry, 319–26. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55744-9_24.
Pełny tekst źródłaShimura, Goro. "On canonical models of arithmetic quotients of bounded symmetric domains". W Collected Papers, 299–377. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4612-2076-3_8.
Pełny tekst źródłaShimura, Goro. "On canonical models of arithmetic quotients of bounded symmetric domains: II". W Collected Papers, 378–99. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4612-2076-3_9.
Pełny tekst źródłaKaup, Wilhelm. "Hermitian Jordan Triple Systems and the Automorphisms of Bounded Symmetric Domains". W Non-Associative Algebra and Its Applications, 204–14. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0990-1_34.
Pełny tekst źródłaStreszczenia konferencji na temat "Bounded Symmetric domain"
Wang, Guoli, Youfu Li i Weiliang Xu. "Symmetric Dichotomy Based Inverse Dynamics of a High-Speed Flexible Beam". W ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0110.
Pełny tekst źródłaENGLIŠ, MIROSLAV. "QP-SPACES: GENERALIZATIONS TO BOUNDED SYMMETRIC DOMAINS". W Proceedings of the 13th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773159_0005.
Pełny tekst źródłaTU, ZHEN-HAN. "RIGIDITY OF PROPER HOLOMORPHIC MAPPINGS BETWEEN BOUNDED SYMMETRIC DOMAINS". W Proceedings of a Satellite Conference to the International Congress of Mathematicians in Beijing 2002. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702500_0022.
Pełny tekst źródłaBalas, Mark J., i Susan A. Frost. "A Stabilization of Fixed Gain Controlled Infinite Dimensional Systems by Augmentation With Direct Adaptive Control". W ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3726.
Pełny tekst źródłaFunk, Maurice, Jean Christoph Jung i Carsten Lutz. "Actively Learning Concepts and Conjunctive Queries under ELr-Ontologies". W Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/260.
Pełny tekst źródłaBotelho, Rui M. "Computing Resonant Frequencies and Coupled Mode-Shapes of Structural-Acoustic Systems Using the Finite Element Method". W ASME 2008 Noise Control and Acoustics Division Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ncad2008-73017.
Pełny tekst źródłaBosshard, Vitor, Benedikt Bünz, Benjamin Lubin i Sven Seuken. "Computing Bayes-Nash Equilibria in Combinatorial Auctions with Continuous Value and Action Spaces". W Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/18.
Pełny tekst źródłaCardou, Philippe, Denis Laurendeau, Luc Beaulieu, Luc Be´langer i Alexandre Carette. "The Dimensional Synthesis of the Linear Delta Robot for a Force-Feedback Device". W ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28383.
Pełny tekst źródłaLiu, Yachong, Ankang Hu, Fenglei Han i Yu Lu. "Numerical Method Research on Nonlinear Roll System of Large Container Ship". W ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41493.
Pełny tekst źródłaRaporty organizacyjne na temat "Bounded Symmetric domain"
Clerc, Jean-Louis. Geometry of the Shilov Boundary of a Bounded Symmetric Domain. GIQ, 2012. http://dx.doi.org/10.7546/giq-10-2009-11-55.
Pełny tekst źródłaClerc, Jean-Louis. Geometry of the Shilov Boundary of a Bounded Symmetric Domain. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-13-2009-25-74.
Pełny tekst źródła