Gotowa bibliografia na temat „Boolean valued models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Boolean valued models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Boolean valued models"
Wu, Xinhe. "Boolean-Valued Models and Their Applications". Bulletin of Symbolic Logic 28, nr 4 (grudzień 2022): 533. http://dx.doi.org/10.1017/bsl.2022.34.
Pełny tekst źródłaDahn, Bernd I. "Boolean valued models and incomplete specifications". Journal of Logic Programming 12, nr 3 (luty 1992): 225–36. http://dx.doi.org/10.1016/0743-1066(92)90025-x.
Pełny tekst źródłaOZAWA, MASANAO. "ORTHOMODULAR-VALUED MODELS FOR QUANTUM SET THEORY". Review of Symbolic Logic 10, nr 4 (5.06.2017): 782–807. http://dx.doi.org/10.1017/s1755020317000120.
Pełny tekst źródłaHansen, Lars. "On an algebra of lattice-valued logic". Journal of Symbolic Logic 70, nr 1 (marzec 2005): 282–318. http://dx.doi.org/10.2178/jsl/1107298521.
Pełny tekst źródłaHernandez, E. G. "Boolean-Valued Models of Set Theory with Automorphisms". Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 32, nr 7-9 (1986): 117–30. http://dx.doi.org/10.1002/malq.19860320704.
Pełny tekst źródłaDobrić, Vladimir, Pavle Milošević, Aleksandar Rakićević, Bratislav Petrović i Ana Poledica. "Interpolative Boolean Networks". Complexity 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/2647164.
Pełny tekst źródłaButz, C., i I. Moerdijk. "An elementary definability theorem for first order logic". Journal of Symbolic Logic 64, nr 3 (wrzesień 1999): 1028–36. http://dx.doi.org/10.2307/2586617.
Pełny tekst źródłaMolchanov, I. S. "Set-Valued Estimators for Mean Bodies Related to Boolean Models". Statistics 28, nr 1 (styczeń 1996): 43–56. http://dx.doi.org/10.1080/02331889708802547.
Pełny tekst źródłaTrinh, Van-Giang, Belaid Benhamou, Thomas Henzinger i Samuel Pastva. "Trap spaces of multi-valued networks: definition, computation, and applications". Bioinformatics 39, Supplement_1 (1.06.2023): i513—i522. http://dx.doi.org/10.1093/bioinformatics/btad262.
Pełny tekst źródłaPantle, Ursa, Volker Schmidt i Evgueni Spodarev. "Central limit theorems for functionals of stationary germ-grain models". Advances in Applied Probability 38, nr 1 (marzec 2006): 76–94. http://dx.doi.org/10.1239/aap/1143936141.
Pełny tekst źródłaRozprawy doktorskie na temat "Boolean valued models"
Santiago, Suárez Juan Manuel. "Infinitary logics and forcing". Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP7024.
Pełny tekst źródłaThe main results of this thesis are related to forcing, but our presentation benefits from relating them to another domain of logic: the model theory of infinitary logics. In the 1950s, after the basic framework of first-order model theory had been established, Carol Karp, followed by Makkai, Keisler and Mansfield among others, developed the area of logic known as "infinitary logics". One key idea from our work, which was more or less implicit in the research of many, is that forcing plays a role in infinitary logic similar to the role compactness plays in first-order logic. Specifically, much alike compactness is the key tool to produce models of first-order theories, forcing can be the key tool to produce the interesting models of infinitary theories. The first part of this thesis explores the relationship between infinitary logics and Boolean valued models. Leveraging on the translation of forcing in the Boolean valued models terminology, this part lays the foundations connecting infinitary logics to forcing. A consistency property is a family of sets of non-contradictory sentences closed under certain natural logical operations. Consistency properties are the standard tools to produce models of non-contradictory infinitary sentences. The first major result we establish in the thesis is the Boolean Model Existence Theorem, asserting that any sentence which belongs to some set which is in some consistency property has a Boolean valued model with the mixing property, and strengthens Mansfield's original result. The Boolean Model Existence Theorem allows us to prove three additional results in the model theory of Boolean valued models for the semantics induced by Boolean valued models with the mixing property: a completeness theorem, an interpolation theorem, and an omitting types theorem. These can be shown to be generalizations of the corresponding results for first order logic in view of the fact that a first order sentence has a Tarski model if and only if it has a Boolean valued model. However we believe that the central result of this part of the thesis is the Conservative Compactness Theorem. In pursuit of a generalization of first-order compactness for infinitary logics, we introduce the concepts of conservative strengthening and of finite conservativity. We argue that the appropriate generalization of finite consistency (relative to Tarski semantics for first order logic) is finite conservativity (relative to the semantics given by Boolean valued models). The Conservative Compactness Theorem states that any finitely conservative family of sentences admits a Boolean valued model with the mixing property. In our opinion these results support the claim: Boolean-valued models with the mixing property provide a natural semantics for infinitary logics. In the second part of the thesis we leverage on the results of the first part to address the following question: For what family of infinitary formulae can we force the existence of a Tarski model for them without destroying stationary sets? Kasum and Velickovic introduced a characterization of which sentences can be forced by a stationary set preserving forcing (AS-goodness). Their work builds on the groundbreaking result of Asperò and Schindler. We define the ASK property -a variant of AS-goodness- which we also employ to the same effect of Kasum and Velickovic. It is shown that for any formula with the ASK-property, one can force the existence of a Tarski model in a stationary set preserving way. The proof of this result builds on the model theoretic perspective of forcing presented in the first part of the thesis, and does so introducing a new notion of iterated forcing. This presentation of iterated forcing is strictly intertwined with the Conservative Compactness Theorem, thereby emphasizing again the analogy between the pairs (forcing, infinitary logics) and (compactness, first-order logic)
Książki na temat "Boolean valued models"
L, Bell J. Set theory: Boolean-valued models and independence proofs. Wyd. 3. Oxford [Oxfordshire]: Clarendon Press, 2011.
Znajdź pełny tekst źródłaBell, J. L. Boolean-valued models and independence proofs in set theory. Wyd. 2. Oxford: Clarendon, 1985.
Znajdź pełny tekst źródłaMakkai, Mihály. Models, logics, and higher-dimensional categories: A tribute to the work of Mihaly Makkai. Providence, R.I: American Mathematical Society, 2011.
Znajdź pełny tekst źródłaButton, Tim, i Sean Walsh. Boolean-valued structures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0013.
Pełny tekst źródłaBell, John L. Set Theory: Boolean-Valued Models and Independence Proofs. Oxford University Press, 2005.
Znajdź pełny tekst źródłaBell, John L. Set Theory: Boolean-Valued Models and Independence Proofs. Ebsco Publishing, 2005.
Znajdź pełny tekst źródłaBoolean-valued models and independence proofs in set theory. Wyd. 2. Oxford [Oxfordshire]: Oxford University Press, 1985.
Znajdź pełny tekst źródłaSimplified Independence Proofs: Boolean Valued Models of Set Theory. Elsevier Science & Technology Books, 2011.
Znajdź pełny tekst źródłaBell, John L. Set Theory: Boolean-Valued Models and Independence Proofs (Oxford Logic Guides). Oxford University Press, USA, 2005.
Znajdź pełny tekst źródłaGeometric Set Theory. American Mathematical Society, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Boolean valued models"
Viale, Matteo. "Boolean Valued Models". W UNITEXT, 81–105. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71660-7_6.
Pełny tekst źródłaDahn, Bernd I. "Boolean valued models and incomplete specifications". W Algebraic and Logic Programming, 119–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-50667-5_63.
Pełny tekst źródłaPierobon, Moreno, i Matteo Viale. "Boolean Valued Models, Sheafifications, and Boolean Ultrapowers of Tychonoff Spaces". W Chapman Mathematical Notes, 355–90. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-68934-5_14.
Pełny tekst źródłada Costa, N. C. A., i F. A. Doria. "Structures, Suppes Predicates, and Boolean-Valued Models in Physics". W Philosophical Logic and Logical Philosophy, 91–118. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8678-8_7.
Pełny tekst źródłaEckert, Daniel, i Frederik Herzberg. "The Problem of Judgment Aggregation in the Framework of Boolean-Valued Models". W Lecture Notes in Computer Science, 138–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09764-0_9.
Pełny tekst źródłaYang, Jiong, i Kuldeep S. Meel. "Rounding Meets Approximate Model Counting". W Computer Aided Verification, 132–62. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37703-7_7.
Pełny tekst źródłaTan, Jianping, Kunpeng Han, Yao Liu, Xiaoxuan Huang i Erte Lin. "Optimization of Damping Groove Parameters of Swashplate Plunger Pump Based on CATIA Secondary Development". W Lecture Notes in Mechanical Engineering, 925–39. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-7887-4_81.
Pełny tekst źródłaDamonte, Alessia. "Testing Joint Sufficiency Twice: Explanatory Qualitative Comparative Analysis". W Texts in Quantitative Political Analysis, 153–86. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12982-7_7.
Pełny tekst źródła"Forcing and Boolean-valued models". W Multiple Forcing, 2–6. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511721168.002.
Pełny tekst źródłaDahn, Bernd I. "BOOLEAN VALUED MODELS AND INCOMPLETE SPECIFICATIONS". W Algebraic and Logic Programming, 119–26. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112620267-012.
Pełny tekst źródłaStreszczenia konferencji na temat "Boolean valued models"
Figallo-Orellano, Aldo, i Juan Sebastián Slagter. "Models for da Costa’s paraconsistent set theory". W Workshop Brasileiro de Lógica. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wbl.2020.11456.
Pełny tekst źródłaShcherba, E. V. "Boolean-valued models of telecommunication systems in some problems of network security". W 2015 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2015. http://dx.doi.org/10.1109/sibcon.2015.7147292.
Pełny tekst źródłaLiu, Han, Xiangnan He, Fuli Feng, Liqiang Nie, Rui Liu i Hanwang Zhang. "Discrete Factorization Machines for Fast Feature-based Recommendation". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/479.
Pełny tekst źródłaKolb, Samuel, Martin Mladenov, Scott Sanner, Vaishak Belle i Kristian Kersting. "Efficient Symbolic Integration for Probabilistic Inference". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/698.
Pełny tekst źródłaBouskela, Daniel, Lena Buffoni, Audrey Jardin, Vince Molnair, Adrian Pop i Armin Zavada. "The Common Requirement Modeling Language". W 15th International Modelica Conference 2023, Aachen, October 9-11. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp204497.
Pełny tekst źródłade Colnet, Alexis, i Stefan Mengel. "A Compilation of Succinctness Results for Arithmetic Circuits". W 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/20.
Pełny tekst źródłaShcherba, E. V., i M. V. Shcherba. "Finding the Optimal Paths in a Boolean-Valued Network". W 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2019. http://dx.doi.org/10.1109/fareastcon.2019.8934413.
Pełny tekst źródłaHarder, Hans, Simon Jantsch, Christel Baier i Clemens Dubslaff. "A Unifying Formal Approach to Importance Values in Boolean Functions". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/304.
Pełny tekst źródłaYakhyaeva, Gulnara. "Application of Boolean Valued and Fuzzy Model Theory for Knowledge Base Development". W 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2019. http://dx.doi.org/10.1109/sibircon48586.2019.8958245.
Pełny tekst źródłaPerhac, Jan, i Zuzana Bilanova. "Categorical Model of Functional Language with Natural Numbers and Boolean Values". W 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). IEEE, 2020. http://dx.doi.org/10.1109/csit49958.2020.9322039.
Pełny tekst źródła