Rozprawy doktorskie na temat „Boltzmann Scheme”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 17 najlepszych rozpraw doktorskich naukowych na temat „Boltzmann Scheme”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Karra, Satish. "Modeling electrospinning process and a numerical scheme using Lattice Boltzmann method to simulate viscoelastic fluid flows". [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1347.
Pełny tekst źródłaGuclu, Yaman. "Modular numerical environment for the characterization of a Helicon plasma thruster". Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421711.
Pełny tekst źródłaUn propulsore al plasma di tipo Helicon è un sistema di propulsione spaziale composto da una sorgente Helicon e da un ugello magnetico appositamente progettato. Tale tipo di propulsore attrae molto interesse per via dell'intervallo atteso per l'impulso specifico ed il rapporto spinta-su-peso, nonché per la scalabilità del concetto e la semplicità costruttiva. Inoltre, un propulsore Helicon è privo di elettrodi e di parti in movimento, dunque ci si aspetta una lunga durata di funzionamento. Malgrado le sorgenti Helicon siamo stata impiegate per decenni per produrre plasmi ad elevata densità, il loro funzionamento non è ancora del tutto compreso. Infatti, sebbene la geometria sia semplice, una vasta gamma di fenomeni fisici convivono all'interno della sorgente: vanno presi in considerazione la fisica atomica, la cinetica dei fluidi, l'elettrostatica e l'elettromagnetismo, e tutti questi sono strettamente interdipendenti. La sorgente Helicon è dunque un sistema molto complesso da modellare e, a conoscenza dell'autore, non è ancora stato sviluppato un sistema di strumenti per la progettazione e l'ottimizzazione di tale tipo di sorgente. Il lavoro svolto all'interno di questa tesi si concentra sullo studio di una sorgente Helicon da applicarsi nella propulsione spaziale e, più precisamente, sullo studio della configurazione proposta del progetto HPH.com (Helicon Plasma Hydrazine. COmbined Micro), nel settimo Framework Programme dell'Unione Europea. La sorgente di plasma considerata è di piccole dimensioni (circa 15 cm in lunghezza), e ci si aspetta che il propulsore fornisca circa 2 mN di spinta a fronte di 50 W di potenza elettrica fornita. Con queste caratteristiche, il propulsore è pensato per l'utilizzo nel controllo d'assetto di micro-satelliti. Con il fine di ottimizzare le risorse computazionali a disposizione, un modello ibrido risulta preferibile rispetto ad un modello monolitico. Secondo il primo approccio, il sistema fisico è decomposto in sotto-sistemi, ed ognuno di essi è simulato da un sotto-modello dedicato, che (idealmente) dovrebbe utilizzare un livello di dettaglio appropriato. Non esiste alcuna teoria esaustiva su come sviluppare modelli ibridi, e parte di questa tesi è dedicata ad investigare la 'via migliore' di costruire un modello ibrido. Viene qui proposto un approccio originale, basato sulla costruzione di sotto-modelli che si affidano a diversi livelli di dettaglio, invece che semplicemente sul miglior modello possibile. Tale approccio è naturale, e ci si aspetta che sia flessibile, robusto e che fornisca una migliore comprensione del fenomeno fisico. Seguendo tale metodologia, è stata sviluppata una serie di modelli via via più complessi. Poiché una simulazione dettagliata ed autoconsistente dell'intera sorgente non può essere completata in una singola tesi di Dottorato, la maggior parte di questo lavoro si concentra sulla comprensione della dinamica accoppiata di elettroni e neutri, che in questo sistema non è mai stata approfonditamente investigata. Per valutare l'efficienza di ionizzazione all'interno della sorgente, modelli analitici 0D e 1D del processo di deplezione dei neutri sono presentati. Il confronto dei due modelli suggerisce i regimi in cui è necessario un livello di dettaglio più elevato, e mostra le condizioni in cui il modello 1D converge asintoticamente alla soluzione 0D. Successivamente, la dinamica dei neutri è accoppiata alla dinamica degli elettroni, per mezzo di un modello semi-analitico 0D che assume che gli elettroni abbiano una distribuzione Maxwelliana. La soluzione ottenuta fornisce valori preliminari per i parametri di plasma all’interno della sorgente, dai quali è possibile valutare un intervallo di lunghezze caratteristiche e di scale temporali che caratterizzano i diversi processi fisici. Questi risultati sono essenziali per la progettazione preliminare di un modello cinetico per gli elettroni mediato su un elevato numero di oscillazioni all'interno della sorgente ('bounce averaged'); tale modello rimane 0D nello spazio, ma esso calcola la distribuzione energetica degli elettroni in modo autoconsistente con i vari processi. Successivamente, un modello 0D-1V cinetico per gli elettroni è stato progettato nel dettaglio, includendo l’effetto del riscaldamento elettromagnetico e dei diversi processi collisionali. La convergenza a regime stazionario è stata accelerata attraverso la separazione delle diverse scale temporali, iterazioni di punto fisso, integrazione implicita con un solutore di Newton a passo temporale variabile, ed un modello ausiliario ridotto. La densità dei neutri nella sorgente è ottenuta dal modello analitico 1D sopra citato. Quando si è ritenuto necessario un modello dettagliato dei neutri, è stato sviluppato un modello cinetico 3D-3V, che impiega un solutore semi-Lagrangiano chiamato Convected Scheme. Questo modello risolve l'equazione di Boltzmann nello spazio nelle fasi a sei dimensioni, più il tempo. Trattandosi della prima implementazione del Convective Scheme in tre dimensioni spaziali, si sono incontrati diversi problemi di natura computazionale, per i quali è stato necessario trovare soluzioni innovative. Per questa ragione, una parte consistente di questo lavoro di tesi è stata dedicata ad implementare nuove condizioni al contorno diffusive, un nuovo modello di iniettore, una nuova mesh angolare ed un innovativo operatore collisionale per il modello di Bhatnagar-Gross-Krook che conservi esattamente massa, quantità di moto ed energia. Inoltre, è stato sviluppato un metodo innovativo di rimappatura, accurato al terzo ordine, che preserva la positività della soluzione e possiede bassa diffusione numerica.
Späth, Peter. "Renewed Theory, Interfacing, and Visualization of Thermal Lattice Boltzmann Schemes". Doctoral thesis, Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000648.
Pełny tekst źródłaIn dieser Doktorarbeit wird das Gitter-Boltzmann-Schema, eine heuristische Methode fuer die Simulation von Stroemungen innerhalb komplexer Raender, untersucht. Die zugrundeliegende Theorie wird unter neuen Gesichtspunkten, insbesondere dem Prinzip der Entropiemaximierung, betrachtet. Des weiteren werden neuartige Methoden fuer die Modellierung der Geometrie (einschl. beweglicher Raender) und der visuellen Darstellung aufgezeigt. Eine objektorientierte Implementierung wird vorgestellt, wobei die Kommunikation zwischen den Objekten über Interpreter-Objekte und die Kommunikation mit der Aussenwelt ueber Interprozess-Kommunikation gehandhabt wird. Mit dem neuen theoretischen Ansatz wird die Gueltigkeit bestehender Gitter-Boltzmann-Schemata fuer die Anwendung auf Stroemungen mit nicht konstanter Temperatur untersucht
Uphoff, Sonja [Verfasser], i Manfred [Akademischer Betreuer] Krafczyk. "Development and Validation of turbulence models for Lattice Boltzmann schemes / Sonja Uphoff ; Betreuer: Manfred Krafczyk". Braunschweig : Technische Universität Braunschweig, 2013. http://d-nb.info/1175821896/34.
Pełny tekst źródłaBernard, Florian. "Efficient Asymptotic Preserving Schemes for BGK and ES-BGK models on Cartesian grids". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0040/document.
Pełny tekst źródłaThis work is devoted to the study of complex flows where hydrodynamic and rarefled regimes coexist. This kind of flows are found in vacuum pumps or hypersonic re-entries of space vehicles where the distance between gas molecules is so large that their microscopicbehaviour differ from the average behaviour of the flow and has be taken into account. We then consider two modelsof the Boltzmann equation viable for such flows: the BGK model dans the ES-BGK model.We first devise a new wall boundary condition ensuring a smooth transition of the solution from the rarefled regime to the hydrodynamic regime. We then describe how this boundary condition (and boundary conditions in general) can be enforced with second order accuracy on an immersed body on Cartesian grids preserving the asymptotic limit towards compressible Euler equations. We exploit the ability of Cartesian grids to massive parallel computations (HPC) to drastically reduce the computational time which is an issue for kinetic models. A new approach considering local velocity grids is then presented showing important gain on the computational time (up to 80%). 3D simulations are also presented showing the efficiency of the methods. Finally, solid particle transport in a rarefied flow is studied. The kinetic model is coupled with a Vlasov-type equation modeling the passive particle transport solved with a method based on remeshing processes. As application, we investigate the realistic test case of the pollution of optical devices carried by satellites due to incompletely burned particles coming from the altitude control thrusters
Février, Tony. "Extension et analyse des schémas de Boltzmann sur réseau : les schémas à vitesse relative". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112316/document.
Pełny tekst źródłaIn this PhD thesis, a new class of lattice Boltzmann schemes called relative velocity schemes is introduced and studied. The purpose of lattice Boltzmann schemes is to approximate problems of macroscopic nature using the microscopic dynamic of Boltzmann type kinetic equations. They compute particle distributions through two phases of transport and relaxation, the particles moving on the nodes of a cartesian lattice. The multiple relaxation times schemes---MRT of d'Humières---, whose relaxation uses a set of moments, linear combinations of the particle distributions, constitutes the initial framework of the thesis. The relative velocity schemes extend the MRT d'Humières schemes. They originate from the cascaded automaton of Geier which provides more stability for the low viscosity regime of the Navier-Stokes equations. Their difference with the d'Humières schemes is carried by the relaxation : a set of moments relative to a velocity field parameter function of space and time is used. This difference is represented by a shifting matrix sending the fixed moments---The d'Humières schemes are associated with a zero velocity field parameter---On the relative moments. The algebraic structure of this matrix is studied. The cascaded automaton is then interpreted as a relative velocity scheme for a new set of polynomials defining the moments. The consistency study of the relative velocity schemes with the equivalent equations method is a keypoint of the thesis. These equations are derived for an arbitrary number of dimensions and velocities. They are then illustrated on examples like the D2Q9 scheme for the Navier-Stokes equations. These equivalent equations are also a tool to predict the stability behaviour of the schemes by analysing their diffusion and dispersion terms. In a last part, the stability according to the velocity field parameter is studied. Two cases especially interest us : a parameter equal to zero---D'Humières schemes---And equal to the fluid velocity---Cascaded automaton. The D2Q9 scheme for the Navier-Stokes equations is numerically studied with a linear Von Neumann analysis and some non linear test cases. The stability of the relative velocity schemes depends on the choice of the polynomials defining the moments. The most important improvement occurs if the polynomials of the cascaded automaton are chosen. We finally study the theoretical and numerical stability of a minimal bidimensional scheme for a linear advection diffusion equation. If the velocity field parameter is chosen equal to the advection velocity, some dispersion terms of the equivalent equations vanish unlike the d'Humières scheme. This implies a better stability behaviour for high velocities, characterized thanks to theoretical weighted stability notion
Herouard, Nicolas. "Optimisation, analyse et comparaison de méthodes numériques déterministes par la dynamique des gaz raréfiés". Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0473/document.
Pełny tekst źródłaDuring the atmospheric re-entry of a space engine, the rarefied air flow around the body is determined by a kinetic model derived from the Boltzmann equation, which describes the evolution of a distribution function of gas molecules in the phase space, this means a 6-dimensional space in the general case. Consequently, a deterministic numerical simulation of this flow requires large computational ressources, both in memory storage and CPU time. The aim of this work is to reduce those ressources, using two different approaches. The first one is a method allowing to optimize the size of the discrete velocity grid used for the computation by a prediction of the shape of the distributions in the velocity space, assuming that the gas is close to thermodynamic equilibrium. The second approach is an attempt to use the asymptotic preservation properties of Discontinuous Galerkin schemes, already established for neutron transport, which allow to take into account the effects of kinetic boundary layers even if they are not resolved by the mesh, while classical methods (such as Finite Volumes) require very refined meshes along the direction normal to the walls. In a last part, we compare the performances of these Discontinuous Galerkin schemes with some classical Finite Volumes schemes, applied to the BGK equation in a simple case, and pay particular attention to their near-wall behavior and numerical boundary conditions
Jobic, Yann. "Numerical approach by kinetic methods of transport phenomena in heterogeneous media". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4723/document.
Pełny tekst źródłaA novel kinetic scheme satisfying an entropy condition is developed, tested and implemented for the simulation of practical problems. The construction of this new entropic scheme is presented. A classical hyperbolic system is approximated by a discrete velocity vector kinetic scheme (with the simplified BGK collisional operator), but applied to an inviscid compressible gas dynamics system with a small Mach number parameter, according to the approach of Carfora and Natalini (2008). The numerical viscosity is controlled, and tends to the physical viscosity of the Navier-Stokes system. The proposed numerical scheme is analyzed and formulated as an explicit finite volume flux vector splitting (FVS) scheme that is very easy to implement. It is close in spirit to Lattice Boltzmann schemes, but it has the advantage to satisfy a discrete entropy inequality under a CFL condition and a subcharacteristic stability condition involving a cell Reynolds number. The new scheme is proved to be second-order accurate in space. We show the efficiency of the method in terms of accuracy and robustness on a variety of classical benchmark tests. Some physical problems have been studied in order to show the usefulness of both schemes. The LB code was successfully used to determine the longitudinal dispersion of metallic foams, with the use of a novel indicator. The entropic code was used to determine the permeability tensor of various porous media, from the Fontainebleau sandstone (low porosity) to a redwood tree sample (high porosity). These results are pretty accurate. Finally, the entropic framework is applied to the advection-diffusion equation as a passive scalar
Kotnala, Sourabh. "Lattice Boltzmann Relaxation Scheme for Compressible Flows". Thesis, 2012. http://hdl.handle.net/2005/3257.
Pełny tekst źródłaKang, Wei-Yi, i 康偉逸. "Computation of Boltzmann Model Equation Using Asymptotic-Preserving and WENO Scheme". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/34783098081653499938.
Pełny tekst źródła國立臺灣大學
應用力學研究所
102
An accurate and direct algorithm for solving the classical Boltzmann equation and the semiclassical Boltzmann equation with relaxation time approximation in phase space is presented for parallel treatment of rarefied gas flows of particles of three statistics. In time domain, we use asymptotic-preserving method for solving two-dimensional Riemann problem by the classical Boltzmann equation and the semiclassical Boltzmann equation with very small relaxation time. After using asymptotic-preserving, we use fourth-order Runge-Kutta method to discrete time domain. In space domain, we use fifth-order weighted essentially non-oscillatory scheme to evolve the flux term. The discrete ordinate method is applied to remove the microscopic velocity dependency of the distribution function that renders the Boltzmann BGK equation in phase space to a set of hyperbolic conservation laws with source terms in physical space. Computational examples of two-dimensional Riemann problems for rarefied gas flows at very small relaxation time are presented. By using WENO scheme, the results show good resolution in capturing the main flow features while using grids with few good points.
Chuang, Min-Cheng, i 莊閔誠. "Numerical Simulations for Semi-Classical Boltzmann Equation Using Asymptotic Preserving Scheme". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/79124702527986711907.
Pełny tekst źródła國立臺灣大學
應用力學研究所
103
This study is aimed at solving the semi-classical Boltzmann-BGK equation to figure out the characteristics of gas flow, especially for rarefied gases. The coupling transformation of both the unsteady one dimensional Sod shock tube and the unsteady two dimensional shock wave impinging upon a square cylinder were investigated numerically. In addition, in order to reduce the computational amount, an appropriated mechanism is applied in this study. To deal with the discontinuity existing in problem, the solution of the semi-classical Boltzmann-BGK equation, namely the velocity distribution function, was divided into two parts with the help of a smoothed dirac delta function. Modified semi-classical Boltzmann-BGK equations were derived and solved for them over the whole computational domain then; the sum of the two parts gives the velocity distribution function in the buffer region. Consequently no more interface conditions need considering and the simulation is largely simplified. Three types of the smoothing functions – linear, cosine, and hypertangent, were tested and the conversation effect in buffer zone were examined in this thesis. As far as numerical discretization is concerned, the discrete coordinate method is employed for the velocity space and a high resolution scheme, either Total Variation Diminishing (TVD) or Weighted Essentially Non Oscillatory (WENO), was utilized for the physical space. Finally the asymptotic preserving scheme is taken in this study as well, which makes the relaxation time independent of collision term of semi-classical Boltzmann-BGK equation, resulting in a significant reduction in the computational amount. Finally the flow fields of quantum gas described by Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics were all simulated. From the test examples of one dimensional unsteady Sod shock wave tube and two dimensional unsteady shock wave impinging upon a square cylinder, the investigation shows a use of a smoothing function and a high resolution scheme combined with the asymptotic preserving scheme technique does help reducing the computational amount.
Chen, Su-Yuan, i 陳司原. "Development of Semiclassical Lattice Boltzmann Method Using Multi Relaxation Time Scheme for Flow Field Simulation". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/99784384360484233614.
Pełny tekst źródła國立臺灣大學
應用力學研究所
100
A Multi Relaxation Time Semiclassical Lattice Boltzmann Method based on the Uehling-Uhlenbeck Boltzmann-BGK equation (Uehling-Uhlenbeck Boltzmann Bhatnagar-Gross-Krook Equation)and Multi Relaxation Time Lattice Boltzmann Method(MRT-LBM)is presented. The method is directly derived by projecting the kinetic governing equation onto the tensor Hermite polynomials and various hydrodynamic approximation orders can be achieved. Simulations of the lid driven cavity flows based on D2Q9 lattice model for several Reynolds numbers and three different particles that obey Bose-Einstein and Fermi-Dirac and Maxwell-Boltzmann statistics are shown to illustrate the method. The results indicate distinct characteristics of the effects of quantum statistics.
Kuriščák, Pavel. "Simulace proudění nenewtonovských tekutin pomocí lattice Boltzmannovy metody". Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-313927.
Pełny tekst źródłaRuhi, Ankit. "Kinetic Theory Based Numerical Schemes for Incompressible Flows". Thesis, 2016. http://hdl.handle.net/2005/3072.
Pełny tekst źródłaTang, Gwo-Liang, i 湯國樑. "High Resolution Schemes for Model Boltzmann Equation". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/10312685027133295093.
Pełny tekst źródła國立臺灣大學
應用力學研究所
93
The Boltzmann equation is a nonlinear, integral, and differential equation with many variables. It is difficult to be solved mathematically, so the collision term is usually replaced with a collision model. This will make it easier to deal with. In this paper, the velocity space will be discreted by applying discrete ordinate method. The relation between velocity space and distribution function is eliminated, so the distribution function can be represented as proper discrete velocity points. Therefore, the motion equation of distribution function, which is continuous in physical space, velocity space, and time, is an integral and differential equation, and by discrete ordinate method it becomes differential equations, which are continuous in physical space and time only and point-wise in velocity space. After this kind of treatment, the difficulties of numerical calculating will be greatly reduced. In this paper, the WENO scheme in conjuction with discrete ordinate method was applied to solve the model Blotzmann equation, and the implicit WENO scheme for the model Blotzmann equation was developed to solve the steady solutions of rarefied gas flows. First, the accuracy of the present scheme was verified by calculating the case of 1-D shock tube problem, which applied discrete ordinate method to discretize the velocity space of Blotzmann model equation and WENO scheme. The result of this case was also compared with results of other high resolution schemes. Because it is difficult to describe the behaviors of collisions between different species of gas molecule, the collision frequency of different species of gas molecule was first developed and substituted into Blotzmann model equation to solve the binary gas mixture flow problem. The suitability was verified by comparing the result of 1-D shock tube case with the analytic solution of Euler’s equation in low Knudsen number condition. The collision frequency developed in this paper can surely describe the behaviors of gas molecules via the result. In cases of 2-D flow problems, the external flows of cylinder and NACA 0012 airfoil were studied. For gas flow past cylinder, the characters of flow field in different Mach number and Knudsen number condition were investigated, and especially for low Knudsen number cases, the results were compared with calculating results of Euler’s equation. It showed that they are correspondent by comparing the characters of bow shock and wake. The convergence rates of different high resolution and implicit schemes were also investigated. The convergence behavior of the implicit WENO scheme developed in this paper is better than others. For gas flow past NACA 0012 airfoil, the calculating results were compared with results of experiment. It showed that the results of WENO scheme are of higher accuracy for the case with angle of attack.
D'ORAZIO, Annunziata. "Kinetic schemes for fluid flows with heat transfer". Doctoral thesis, 2004. http://hdl.handle.net/11573/181641.
Pełny tekst źródłaSpäth, Peter Michael [Verfasser]. "Renewed theory, interfacing, and visualization of thermal lattice Boltzmann schemes / vorgelegt von Peter Michael Späth". 2000. http://d-nb.info/967852307/34.
Pełny tekst źródła