Artykuły w czasopismach na temat „Blood flow”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Blood flow.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Blood flow”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Merrill, Gary. "Caffeine and blood flow". Clinical Medical Reviews and Reports 3, nr 4 (6.04.2021): 01–03. http://dx.doi.org/10.31579/2690-8794/078.

Pełny tekst źródła
Streszczenie:
Arguably, caffeine is the world’s leading drug of choice. It is estimated that in the U.S. and Europe at least ninety per cent of the adult populations consume caffeine-containing beverages several times each day. It is also known that consumers prefer their hot coffee to be in the range of 45-60°C (i.e. as hot as 140°F). If such a drink is spilled on the exposed skin it can cause full-thickness, third degree burns within 5 seconds. These are the kinds of burns that produce permanent damage and scarring for life. The prudence of consuming hot coffee and other hot drinks at such temperatures is questionable, especially when children and adolescents are involved.
Style APA, Harvard, Vancouver, ISO itp.
2

Merrill, Gary. "Caffeine and Peripheral Blood Flow". Clinical Medical Reviews and Reports 2, nr 02 (24.02.2020): 01–04. http://dx.doi.org/10.31579/2690-8794/009.

Pełny tekst źródła
Streszczenie:
Caffeine is the drug of choice for adults of the world. It is commonly found in the favorite beverages they consume such as coffee, energy drinks, soft drinks and tea. The caffeine molecule is a decorative sculpture that helps visitors identify the recently-constructed Chemistry and Chemical Biology Building on the Busch Campus of Rutgers University, Piscataway, New Jersey.
Style APA, Harvard, Vancouver, ISO itp.
3

Bando, Kiyoshi, i Kenkichi Ohba. "Numerical Simulation of Flow around LDV-Sensor for Measuring Blood Flow Velocities(Cardiovascular flow Simulation)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 55–56. http://dx.doi.org/10.1299/jsmeapbio.2004.1.55.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Pollock, Bruce E. "Blood Flow Out Must Equal Blood Flow In". International Journal of Radiation Oncology*Biology*Physics 111, nr 4 (listopad 2021): 854. http://dx.doi.org/10.1016/j.ijrobp.2021.03.040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Noble, M. I. M., i P. R. Belcher. "Blood Pressure versus Blood Flow". Transfusion Medicine and Hemotherapy 20, nr 3 (1993): 121–25. http://dx.doi.org/10.1159/000222824.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wilder-Smith, Einar P., i Arvind Therimadasamy. "Nerve Blood Flow". Journal of Ultrasound in Medicine 32, nr 1 (styczeń 2013): 187–88. http://dx.doi.org/10.7863/jum.2013.32.1.187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Selman, Warren R., i H. Richard Winn. "Cerebral blood flow". Neurosurgical Focus 32, nr 2 (luty 2012): Introduction. http://dx.doi.org/10.3171/2011.12.focus11353.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Scifers, James R., Eric Fuchs, Geoff Kaplan i Kevin King. "Blood Flow Restriction". Athletic Training & Sports Health Care 8, nr 4 (1.07.2016): 138–41. http://dx.doi.org/10.3928/19425864-20160621-01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

LUNELL, NILS-OLOV, i LARS NYLUND. "Uteroplacental Blood Flow". Clinical Obstetrics and Gynecology 35, nr 1 (marzec 1992): 108–18. http://dx.doi.org/10.1097/00003081-199203000-00016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Brechtelsbauer, P. Bradley, i Josef M. Miller. "Cochlear blood flow". Current Opinion in Otolaryngology & Head and Neck Surgery 4, nr 5 (październik 1996): 294–301. http://dx.doi.org/10.1097/00020840-199610000-00002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Harper, A. M. "Cerebral Blood Flow". Journal of Neurology, Neurosurgery & Psychiatry 51, nr 8 (1.08.1988): 1112. http://dx.doi.org/10.1136/jnnp.51.8.1112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Yoshikawa, Hideki, i Takashi Azuma. "Blood Flow Imaging". Journal of the Acoustical Society of America 129, nr 1 (2011): 546. http://dx.doi.org/10.1121/1.3554819.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

TANAKA, HIROFUMI. "Cerebral Blood Flow". Exercise and Sport Sciences Reviews 37, nr 3 (lipiec 2009): 111. http://dx.doi.org/10.1097/jes.0b013e3181aa5aee.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Steinhausen, Michael, Karlhans Endlich i David L. Wiegman. "Glomerular blood flow". Kidney International 38, nr 5 (listopad 1990): 769–84. http://dx.doi.org/10.1038/ki.1990.271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Moore, P., i G. M. Cooper. "Placental blood flow". Current Anaesthesia & Critical Care 10, nr 2 (kwiecień 1999): 83–86. http://dx.doi.org/10.1016/s0953-7112(99)90006-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Tur, Ethel. "Cutaneous Blood Flow." International Journal of Dermatology 30, nr 7 (lipiec 1991): 471–76. http://dx.doi.org/10.1111/j.1365-4362.1991.tb04863.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Kliman, Harvey Jon. "Uteroplacental Blood Flow". American Journal of Pathology 157, nr 6 (grudzień 2000): 1759–68. http://dx.doi.org/10.1016/s0002-9440(10)64813-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Won, Rachel. "Mapping blood flow". Nature Photonics 5, nr 7 (30.06.2011): 393. http://dx.doi.org/10.1038/nphoton.2011.132.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ramanathan, Tamilselvi, i Henry Skinner. "Coronary blood flow". Continuing Education in Anaesthesia Critical Care & Pain 5, nr 2 (kwiecień 2005): 61–64. http://dx.doi.org/10.1093/bjaceaccp/mki012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

&NA;. "Cerebral blood flow". Nuclear Medicine Communications 8, nr 7 (lipiec 1987): 453–56. http://dx.doi.org/10.1097/00006231-198707000-00001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Milligan, Andrew J., i Masoud Panjehpour. "Blood flow values". International Journal of Radiation Oncology*Biology*Physics 14, nr 5 (maj 1988): 1056–57. http://dx.doi.org/10.1016/0360-3016(88)90038-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Schuman, Joel S. "Measuring Blood Flow". JAMA Ophthalmology 133, nr 9 (1.09.2015): 1052. http://dx.doi.org/10.1001/jamaophthalmol.2015.2287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Laurent, Stéphane, Pierre Boutouyrie i Elie Mousseaux. "Aortic Stiffening, Aortic Blood Flow Reversal, and Renal Blood Flow". Hypertension 66, nr 1 (lipiec 2015): 10–12. http://dx.doi.org/10.1161/hypertensionaha.115.05357.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kuwabara, Kei, Yuichi Higuchi, Hiroshi Koizumi i Ryoichi Kasahara. "Blood Flow Observed with Smartphone--Ultracompact Wearable Blood Flow Sensor". NTT Technical Review 13, nr 1 (styczeń 2015): 17–22. http://dx.doi.org/10.53829/ntr201501fa3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Moore, Stephen, i Tim David. "3D Time-Dependent Models of Blood Flow in the Cerebro-vasculature(Cardiovascular flow Simulation)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 51–52. http://dx.doi.org/10.1299/jsmeapbio.2004.1.51.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Shirakura, Takuo, Kazuo Kubota i Kousei Tamura. "Blood Viscosity and Cerebral Blood Flow." Nippon Ronen Igakkai Zasshi. Japanese Journal of Geriatrics 30, nr 3 (1993): 174–81. http://dx.doi.org/10.3143/geriatrics.30.174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Lowe, Gordon D. O. "Defibrination, blood flow and blood rheology". Clinical Hemorheology and Microcirculation 4, nr 1 (22.12.2016): 15–28. http://dx.doi.org/10.3233/ch-1984-4104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

DeWitt, Douglas S., i Donald S. Prough. "Cerebral Blood Flow and Blood Pressure". Critical Care Medicine 47, nr 7 (lipiec 2019): 1007–9. http://dx.doi.org/10.1097/ccm.0000000000003784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

von Kummer, R., P. Haag i T. Back. "Blood viscosity and cerebral blood flow." Stroke 24, nr 5 (maj 1993): 760–62. http://dx.doi.org/10.1161/str.24.5.760b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Nobili, F., i G. Rodriguez. "Blood viscosity and cerebral blood flow." Stroke 25, nr 4 (kwiecień 1994): 910–11. http://dx.doi.org/10.1161/01.str.25.4.910.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Beraia, M., i G. Beraia. "Energy/information dissipation and blood flow in human body". Cardiology Research and Reports 3, nr 2 (10.05.2021): 01–08. http://dx.doi.org/10.31579/2692-9759/017.

Pełny tekst źródła
Streszczenie:
The amount of work done to displace blood in systemic arteries and capillaries exceeds the work done by the left ventricle. Besides, at the heartbeat, electromagnetic energy dissipates from the heart to the whole human body. For the problem study, the dielectric spectroscopy method was used. Ringer’s, amino acid solution, and heparinized venous blood were affected by the external electromagnetic oscillations (100-65000Hz, 1-8MHz.) in 17 healthy individuals. Correlations were noted between the initial and induced signal forms/frequencies according to the impedance of the system. The electric impulse from the heart initiates an oscillating electric field around the charged cells/particles and an emerging repulsing electromagnetic force, based on the electroacoustic phenomena, promotes the blood flow, in addition to the pulse pressure from the myocardial contraction. Blood conduces mechanical, electromagnetic waves of different frequencies and transmits energy/information to implement the spontaneous chemical processes in the human body.
Style APA, Harvard, Vancouver, ISO itp.
32

Deshpande Neha Adnani, Sagar. "Knowledge about Blood Flow Restriction Therapy among Physiotherapy Students". International Journal of Science and Research (IJSR) 12, nr 5 (5.05.2023): 2297–301. http://dx.doi.org/10.21275/sr23524235411.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Franke, W. D., G. M. Stephens i L. M. Neilsen. "EFFECTS OF HAND BLOOD FLOW ON PEAK FOREARM BLOOD FLOW 1050". Medicine &amp Science in Sports &amp Exercise 28, Supplement (maj 1996): 176. http://dx.doi.org/10.1097/00005768-199605001-01048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Ogoh, Shigehiko, Kohei Sato, Kazunobu Okazaki, Tadayoshi Miyamoto, Ai Hirasawa, Keiko Morimoto i Manabu Shibasaki. "Blood Flow Distribution during Heat Stress: Cerebral and Systemic Blood Flow". Journal of Cerebral Blood Flow & Metabolism 33, nr 12 (14.08.2013): 1915–20. http://dx.doi.org/10.1038/jcbfm.2013.149.

Pełny tekst źródła
Streszczenie:
The purpose of the present study was to assess the effect of heat stress-induced changes in systemic circulation on intra- and extracranial blood flows and its distribution. Twelve healthy subjects with a mean age of 22±2 (s.d.) years dressed in a tube-lined suit and rested in a supine position. Cardiac output (Q), internal carotid artery (ICA), external carotid artery (ECA), and vertebral artery (VA) blood flows were measured by ultrasonography before and during whole body heating. Esophageal temperature increased from 37.0±0.2°C to 38.4±0.2°C during whole body heating. Despite an increase in Q (59±31%, P<0.001), ICA and VA decreased to 83±15% ( P=0.001) and 87±8% ( P=0.002), respectively, whereas ECA blood flow gradually increased from 188±72 to 422±189 mL/minute (+135%, P<0.001). These findings indicate that heat stress modified the effect of Q on blood flows at each artery; the increased Q due to heat stress was redistributed to extracranial vascular beds.
Style APA, Harvard, Vancouver, ISO itp.
35

Vehrs, Pat R., Nicole Tafunai, Eric Cruz, Kylie Martin, Olivia Warren, Parker Jensen i Sadie Deem. "Femoral Blood Flow During Blood Flow Restriction In Males And Females". Medicine & Science in Sports & Exercise 52, nr 7S (lipiec 2020): 891. http://dx.doi.org/10.1249/01.mss.0000685212.92510.b8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Blaak, E. E., M. A. van Baak, G. J. Kemerink, M. T. W. Pakbiers, G. A. K. Heidendal i W. H. M. Saris. "Total Forearm Blood Flow as an Indicator of Skeletal Muscle Blood Flow: Effect of Subcutaneous Adipose Tissue Blood Flow". Clinical Science 87, nr 5 (1.11.1994): 559–66. http://dx.doi.org/10.1042/cs0870559.

Pełny tekst źródła
Streszczenie:
1. In studying forearm skeletal muscle substrate exchange, an often applied method for estimating skeletal muscle blood flow is strain gauge plethysmography. A disadvantage of this method is that it only measures total blood flow through a segment of forearm and not the flow through the individual parts such as skin, adipose tissue and muscle. 2. In the present study the contribution of forearm subcutaneous adipose tissue blood flow to total forearm blood flow was evaluated in lean (% body fat 17.0 ± 2.2) and obese males (% body fat 30.9 ± 1.6) during rest and during infusion of the non-selective β-agonist isoprenaline. Measurements were obtained of body composition (hydrostatic weighing), forearm composition (magnetic resonance imaging) and of total forearm (venous occlusion plethysmography), skin (skin blood flow, laser Doppler), and subcutaneous adipose tissue blood flow (133Xe washout technique). 3. The absolute forearm area and the relative amount of fat (% of forearm area) were significantly higher in obese as compared to lean subjects, whereas the relative amounts of muscle and skin were similar. 4. During rest, the percentage contribution of adipose tissue blood flow to total forearm blood flow was significantly higher in lean compared with obese subjects (19 vs 12%, P < 0.05), whereas there were no differences in percentage contribution between both groups during isoprenaline infusion (10 vs 13%). Furthermore, the contribution of adipose tissue blood flow to total forearm blood flow was significantly lower during isoprenaline infusion than during rest in lean subjects (P < 0.05), whereas in the obese this value was similar during rest and during isoprenaline infusion. 5. In conclusion, although the overall contribution of adipose tissue blood flow to total forearm blood flow seems to be relatively small, the significance of this contribution may vary with degree of adiposity. Calculations on the contribution of adipose tissue blood flow and SBF to total forearm blood flow indicate that the contribution of non-muscular flow to total forearm blood flow may be of considerable importance and may amount in lean subjects to 35–50% of total forearm blood flow in the resting state.
Style APA, Harvard, Vancouver, ISO itp.
37

Stanford, Daphney M., Matthew A. Chatlaong, William M. Miller, J. Grant Mouser, Scott J. Dankel i Matthew B. Jessee. "Applying Relative And Absolute Blood Flow Restriction Alters Blood Flow Velocity But Not Blood Profiles". Medicine & Science in Sports & Exercise 53, nr 8S (sierpień 2021): 93. http://dx.doi.org/10.1249/01.mss.0000760196.35540.67.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

TSUBOTA, Ken-ichi, Shigeo WADA i Takami YAMAGUCHI. "623 Blood Flow Simulation using Particle Method (Effects of Red Blood Cells on Blood Flow)". Proceedings of the JSME annual meeting 2005.1 (2005): 71–72. http://dx.doi.org/10.1299/jsmemecjo.2005.1.0_71.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Polak, K., E. Polska, A. Luksch, G. Dorner, G. Fuchsjäger-Mayrl, O. Findl, H.-G. Eichler, M. Wolzt i L. Schmetterer. "Choroidal blood flow and arterial blood pressure". Eye 17, nr 1 (styczeń 2003): 84–88. http://dx.doi.org/10.1038/sj.eye.6700246.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Nafz, Benno, Heike Berthold, Heimo Ehmke, Hartmut R. Kirchheim i Pontus B. Persson. "Dissociation of Blood Pressure and Blood Flow". Kidney and Blood Pressure Research 20, nr 3 (1997): 205–9. http://dx.doi.org/10.1159/000174146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

James, I. M., L. Yogendran, K. McLaughlin i C. Munro. "Blood Pressure Lowering and Cerebral Blood Flow". Journal of Cardiovascular Pharmacology 19, Supplement 1 (1992): S40—S43. http://dx.doi.org/10.1097/00005344-199219001-00009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

NIIMI, Hideyuki. "Multi-Phase Flow Model of Blood Flow". JAPANESE JOURNAL OF MULTIPHASE FLOW 1, nr 1 (1987): 6–17. http://dx.doi.org/10.3811/jjmf.1.6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Chiao, Richard Y. "B‐mode blood flow (B‐Flow) imaging". Journal of the Acoustical Society of America 109, nr 5 (maj 2001): 2360. http://dx.doi.org/10.1121/1.4744300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Asami, Naoya, Yoichi Yamazaki i Yoshimi Kamiyama. "Blood Flow Simulation during Flow-Mediated Dilation". IEEJ Transactions on Electronics, Information and Systems 138, nr 3 (2018): 221–27. http://dx.doi.org/10.1541/ieejeiss.138.221.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Morales-Acuna, Francisco, Carolina Valencia i Alvaro N. Gurovich. "Blood Flow Patterns during Flow-Mediated Dilation". Medicine & Science in Sports & Exercise 51, Supplement (czerwiec 2019): 489. http://dx.doi.org/10.1249/01.mss.0000561969.51298.4e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ündar, A., T. Masai, S. Q. Yang, M. Mueller, M. McGarry, R. Inman, O. H. Frazier i C. D. Fraser. "PULSATILE FLOW AND REGIONAL CEREBRAL BLOOD FLOW". ASAIO Journal 45, nr 2 (marzec 1999): 158. http://dx.doi.org/10.1097/00002480-199903000-00154.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Asami, Naoya, Yoichi Yamazaki i Yoshimi Kamiyama. "Blood flow simulation during flow-mediated dilation". Electronics and Communications in Japan 101, nr 8 (25.06.2018): 19–26. http://dx.doi.org/10.1002/ecj.12083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Lima, Rui, Takuji Ishikawa, Hiroki Fujiwara, Motohiro Takeda, Yohsuke Imai, Ken-Ichi Tsubota, Noriaki Matsuki, Shigeo Wada i Takami Yamaguchi. "P-04 MEASUREMENT OF MULTI-RED BLOOD CELLS INTERACTIONS IN BLOOD FLOW BY CONFOCAL MICRO-PTV". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2007.3 (2007): S92. http://dx.doi.org/10.1299/jsmeapbio.2007.3.s92.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Sadda, SrinivasR, Jyotsna Maram i Sowmya Srinivas. "Evaluating ocular blood flow". Indian Journal of Ophthalmology 65, nr 5 (2017): 337. http://dx.doi.org/10.4103/ijo.ijo_330_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Escobar, Patricia, i Christopher W. Bryan-Brown. "Oxygenation and Blood Flow". Anesthesiology Clinics of North America 9, nr 2 (czerwiec 1991): 219–28. http://dx.doi.org/10.1016/s0889-8537(21)00367-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii