Artykuły w czasopismach na temat „Blood-brain barrier”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Blood-brain barrier.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Blood-brain barrier”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

KANDA, Takashi. "Blood-Brain Barrier and Blood-Nerve Barrier". Yamaguchi Medical Journal 54, nr 1 (2005): 5–11. http://dx.doi.org/10.2342/ymj.54.5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shalaby, Mohamed Adel. "Blood-Brain Barrier". Al-Azhar Medical Journal 45, nr 3 (lipiec 2016): i—vi. http://dx.doi.org/10.12816/0033115.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lawther, Bradley K., Sajith Kumar i Hari Krovvidi. "Blood–brain barrier". Continuing Education in Anaesthesia Critical Care & Pain 11, nr 4 (sierpień 2011): 128–32. http://dx.doi.org/10.1093/bjaceaccp/mkr018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Dunn, Jeff F., i Albert M. Isaacs. "The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers". Journal of Applied Physiology 131, nr 3 (1.09.2021): 977–85. http://dx.doi.org/10.1152/japplphysiol.00108.2020.

Pełny tekst źródła
Streszczenie:
The blood-brain barrier (BBB), blood-cerebrospinal fluid (CSF) barrier (BCSFB), and CSF-brain barriers (CSFBB) are highly regulated barriers in the central nervous system comprising complex multicellular structures that separate nerves and glia from blood and CSF, respectively. Barrier damage has been implicated in the pathophysiology of diverse hypoxia-related neurological conditions, including stroke, multiple sclerosis, hydrocephalus, and high-altitude cerebral edema. Much is known about the damage to the BBB in response to hypoxia, but much less is known about the BCSFB and CSFBB. Yet, it is known that these other barriers are implicated in damage after hypoxia or inflammation. In the 1950s, it was shown that the rate of radionucleated human serum albumin passage from plasma to CSF was five times higher during hypoxic than normoxic conditions in dogs, due to BCSFB disruption. Severe hypoxia due to administration of the bacterial toxin lipopolysaccharide is associated with disruption of the CSFBB. This review discusses the anatomy of the BBB, BCSFB, and CSFBB and the impact of hypoxia and associated inflammation on the regulation of those barriers.
Style APA, Harvard, Vancouver, ISO itp.
5

Koziara, J. M., P. R. Lockman, D. D. Allen i R. J. Mumper. "The Blood-Brain Barrier and Brain Drug Delivery". Journal of Nanoscience and Nanotechnology 6, nr 9 (1.09.2006): 2712–35. http://dx.doi.org/10.1166/jnn.2006.441.

Pełny tekst źródła
Streszczenie:
The present report encompasses a thorough review of drug delivery to the brain with a particular focus on using drug carriers such as liposomes and nanoparticles. Challenges in brain drug delivery arise from the presence of one of the strictest barriers in vivo—the blood-brain barrier (BBB). This barrier exists at the level of endothelial cells of brain vasculature and its role is to maintain brain homeostasis. To better understand the principles of brain drug delivery, relevant knowledge of the blood-brain barrier anatomy and physiology is briefly reviewed. Several approaches to overcome the BBB have been reviewed including the use of carrier systems. In addition, strategies to enhance brain drug delivery by specific brain targeting are discussed.
Style APA, Harvard, Vancouver, ISO itp.
6

Cho, Choi-Fong. "The Blood-Brain Barrier". Oncology Times 40, nr 2 (styczeń 2018): 1. http://dx.doi.org/10.1097/01.cot.0000530114.97923.aa.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mizee, Mark Ronald, i Helga Eveline de Vries. "Blood-brain barrier regulation". Tissue Barriers 1, nr 5 (grudzień 2013): e26882. http://dx.doi.org/10.4161/tisb.26882.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Dobbing, John. "The Blood-Brain Barrier". Developmental Medicine & Child Neurology 3, nr 6 (12.11.2008): 610–12. http://dx.doi.org/10.1111/j.1469-8749.1961.tb10430.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dobbing, John. "The Blood-Brain Barrier". Developmental Medicine & Child Neurology 3, nr 4 (12.11.2008): 311–14. http://dx.doi.org/10.1111/j.1469-8749.1961.tb15323.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Daneman, Richard, i Alexandre Prat. "The Blood–Brain Barrier". Cold Spring Harbor Perspectives in Biology 7, nr 1 (styczeń 2015): a020412. http://dx.doi.org/10.1101/cshperspect.a020412.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Goldstein, N., R. Goldstein, D. Terterov, A. A. Kamensky, G. I. Kovalev, Yu A. Zolotarev, G. N. Avakyan i S. Terterov. "Blood-brain barrier unlocked". Biochemistry (Moscow) 77, nr 5 (maj 2012): 419–24. http://dx.doi.org/10.1134/s000629791205001x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Goldstein, Gary W., i A. Lorris Betz. "The Blood-Brain Barrier". Scientific American 255, nr 3 (wrzesień 1986): 74–83. http://dx.doi.org/10.1038/scientificamerican0986-74.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Engelhardt, B. "Blood-Brain Barrier Differentiation". Science 334, nr 6063 (22.12.2011): 1652–53. http://dx.doi.org/10.1126/science.1216853.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Pan, Weihong, i Abba J. Kastin. "The Blood-Brain Barrier". Neuroscientist 23, nr 2 (7.07.2016): 124–36. http://dx.doi.org/10.1177/1073858416639005.

Pełny tekst źródła
Streszczenie:
Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.
Style APA, Harvard, Vancouver, ISO itp.
15

JOÓ, FERENC. "The blood–brain barrier". Nature 329, nr 6136 (wrzesień 1987): 208. http://dx.doi.org/10.1038/329208b0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Pardridge, William M. "Blood-Brain Barrier Genomics". Stroke 38, nr 2 (luty 2007): 686–90. http://dx.doi.org/10.1161/01.str.0000247887.61831.74.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Palmer, Alan M. "The blood–brain barrier". Neurobiology of Disease 37, nr 1 (styczeń 2010): 1–2. http://dx.doi.org/10.1016/j.nbd.2009.09.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Li, Jian Yi, Ruben J. Boado i William M. Pardridge. "Blood—Brain Barrier Genomics". Journal of Cerebral Blood Flow & Metabolism 21, nr 1 (styczeń 2001): 61–68. http://dx.doi.org/10.1097/00004647-200101000-00008.

Pełny tekst źródła
Streszczenie:
The blood–brain barrier (BBB) is formed by the brain microvascular endothelium, and the unique transport properties of the BBB are derived from tissue-specific gene expression within this cell. The current studies developed a gene microarray approach specific for the BBB by purifying the initial mRNA from isolated rat brain capillaries to generate tester cDNA. A polymerase chain reaction–based subtraction cloning method, suppression subtractive hybridization (SSH), was used, and the BBB cDNA was subtracted with driver cDNA produced from mRNA isolated from rat liver and kidney. Screening 5% of the subtracted tester cDNA resulted in identification of 50 gene products and more than 80% of those were selectively expressed at the BBB; these included novel gene sequences not found in existing databases, ESTs, and known genes that were not known to be selectively expressed at the BBB. Genes in the latter category include tissue plasminogen activator, insulin-like growth factor-2, PC-3 gene product, myelin basic protein, regulator of G protein signaling 5, utrophin, IκB, connexin-45, the class I major histocompatibility complex, the rat homologue of the transcription factors hbrm or EZH1, and organic anion transporting polypeptide type 2. Knowledge of tissue-specific gene expression at the BBB could lead to new targets for brain drug delivery and could elucidate mechanisms of brain pathology at the microvascular level.
Style APA, Harvard, Vancouver, ISO itp.
19

Stoker, Andrew W. "Blood–brain barrier breached". Trends in Genetics 17, nr 3 (marzec 2001): 129. http://dx.doi.org/10.1016/s0168-9525(01)02246-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Dyrna, Felix, Sophie Hanske, Martin Krueger i Ingo Bechmann. "The Blood-Brain Barrier". Journal of Neuroimmune Pharmacology 8, nr 4 (6.06.2013): 763–73. http://dx.doi.org/10.1007/s11481-013-9473-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Younger, David S. "The Blood-Brain Barrier". Neurologic Clinics 37, nr 2 (maj 2019): 235–48. http://dx.doi.org/10.1016/j.ncl.2019.01.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Bradbury, MW. "The blood-brain barrier". Experimental Physiology 78, nr 4 (1.07.1993): 453–72. http://dx.doi.org/10.1113/expphysiol.1993.sp003698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Fehervari, Zoltan. "Blood–brain barrier integrity". Nature Immunology 20, nr 1 (11.12.2018): 1. http://dx.doi.org/10.1038/s41590-018-0286-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Serlin, Yonatan, Jonathan Ofer, Gal Ben-Arie, Ronel Veksler, Gal Ifergane, Ilan Shelef, Jeffrey Minuk, Anat Horev i Alon Friedman. "Blood-Brain Barrier Leakage". Stroke 50, nr 5 (maj 2019): 1266–69. http://dx.doi.org/10.1161/strokeaha.119.025247.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

MNH. "The Blood-Brain Barrier". Journal of Neuropathology & Experimental Neurology 62, nr 10 (październik 2003): 1086. http://dx.doi.org/10.1093/jnen/62.10.1086.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Wright, Karen. "The Blood-Brain Barrier". Scientific American 260, nr 3 (marzec 1989): 27–30. http://dx.doi.org/10.1038/scientificamerican0389-27.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Pardridge, William M. "Blood–brain barrier delivery". Drug Discovery Today 12, nr 1-2 (styczeń 2007): 54–61. http://dx.doi.org/10.1016/j.drudis.2006.10.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Arvanitis, Costas D., Gino B. Ferraro i Rakesh K. Jain. "The blood–brain barrier and blood–tumour barrier in brain tumours and metastases". Nature Reviews Cancer 20, nr 1 (10.10.2019): 26–41. http://dx.doi.org/10.1038/s41568-019-0205-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Mineiro, Rafael, Tânia Albuquerque, Ana Raquel Neves, Cecília R. A. Santos, Diana Costa i Telma Quintela. "The Role of Biological Rhythms in New Drug Formulations to Cross the Brain Barriers". International Journal of Molecular Sciences 24, nr 16 (8.08.2023): 12541. http://dx.doi.org/10.3390/ijms241612541.

Pełny tekst źródła
Streszczenie:
For brain protection, the blood–brain barrier and blood–cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood–brain barrier and in the blood–cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.
Style APA, Harvard, Vancouver, ISO itp.
30

Moody, Dixon M. "The Blood-Brain Barrier and Blood-Cerebral Spinal Fluid Barrier". Seminars in Cardiothoracic and Vascular Anesthesia 10, nr 2 (czerwiec 2006): 128–31. http://dx.doi.org/10.1177/1089253206288992.

Pełny tekst źródła
Streszczenie:
An intact blood-brain barrier and normal production, circulation, and absorption of cerebrospinal fluid are critical for normal brain function. Minor disruptions of barrier function are without clinical consequences. Major disruptions accompany most significant acute brain injuries. The anatomic location of the blood-brain barrier is the endothelial cells of arterioles, capillaries, veins, and the epithelial cell surface of the choroid plexus. However, endothelial cells require the presence of glial cells to maintain barrier function. During cardiopulmonary bypass, several factors may result in a temporary disruption of the barrier; the most important are systemic inflammatory response and focal ischemia due to emboli. Lacking a lymphatic system, the brain depends on the circulation of cerebrospinal fluid to remove the products of metabolism, and the circulation of cerebrospinal fluid depends on a vascular systolic pulse wave to drive this fluid antegrade along the brain paravascular spaces. Although it is not possible to identify this paravavscular space histologically, its presence is confirmed by tracer methods.
Style APA, Harvard, Vancouver, ISO itp.
31

Paulson, O. "Blood–brain barrier, brain metabolism and cerebral blood flow". European Neuropsychopharmacology 12, nr 6 (grudzień 2002): 495–501. http://dx.doi.org/10.1016/s0924-977x(02)00098-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Schlosshauer, Burkhard, i Heiko Steuer. "The Blood-brain Barrier and the Outer Blood-retina Barrier". Medicinal Chemistry Reviews - Online 2, nr 1 (1.02.2005): 11–26. http://dx.doi.org/10.2174/1567203052997031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

McCabe, Shannon Morgan, i Ningning Zhao. "The Potential Roles of Blood–Brain Barrier and Blood–Cerebrospinal Fluid Barrier in Maintaining Brain Manganese Homeostasis". Nutrients 13, nr 6 (27.05.2021): 1833. http://dx.doi.org/10.3390/nu13061833.

Pełny tekst źródła
Streszczenie:
Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.
Style APA, Harvard, Vancouver, ISO itp.
34

Francesca, Bonomini, i Rita Rezzani. "Aquaporin and Blood Brain Barrier". Current Neuropharmacology 8, nr 2 (1.06.2010): 92–96. http://dx.doi.org/10.2174/157015910791233132.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

McMahon, Andrew P., i Justin K. Ichida. "Repairing the blood-brain barrier". Science 375, nr 6582 (18.02.2022): 715–16. http://dx.doi.org/10.1126/science.abn7921.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Rustenhoven, Justin, i Jonathan Kipnis. "Bypassing the blood-brain barrier". Science 366, nr 6472 (19.12.2019): 1448–49. http://dx.doi.org/10.1126/science.aay0479.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Chen, Yi-Je, Breanna K. Wallace, Natalie Yuen, David P. Jenkins, Heike Wulff i Martha E. O’Donnell. "Blood–Brain Barrier KCa3.1 Channels". Stroke 46, nr 1 (styczeń 2015): 237–44. http://dx.doi.org/10.1161/strokeaha.114.007445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Neuwelt, E. A., P. A. Barnett, C. I. McCormick, E. P. Frenkel i J. D. Minna. "Osmotic blood-brain barrier modification". Neurosurgery 17, nr 3 (wrzesień 1985): 419???23. http://dx.doi.org/10.1097/00006123-198509000-00005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Schulze, C. "Understanding the Blood-Brain-Barrier". Neuropathology and Applied Neurobiology 23, nr 3 (czerwiec 1997): 150–51. http://dx.doi.org/10.1046/j.1365-2990.1997.t01-1-90098900.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Schulze, Dr C. "Understanding the Blood-Brain-Barrier". Neuropathology and Applied Neurobiology 23, nr 2 (kwiecień 1997): 150–51. http://dx.doi.org/10.1111/j.1365-2990.1997.tb01197.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Stern, Peter. "Developing the blood-brain barrier". Science 361, nr 6404 (23.08.2018): 763.11–765. http://dx.doi.org/10.1126/science.361.6404.763-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Simpson, Ian A., Nathan M. Appel, Mitsuhiko Hokari, Jun Oki, Geoffrey D. Holman, Fran Maher, Ellen M. Koehler-Stec, Susan J. Vannucci i Quentin R. Smith. "Blood-Brain Barrier Glucose Transporter". Journal of Neurochemistry 72, nr 1 (styczeń 1999): 238–47. http://dx.doi.org/10.1046/j.1471-4159.1999.0720238.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Keaney, James, i Matthew Campbell. "The dynamic blood-brain barrier". FEBS Journal 282, nr 21 (8.09.2015): 4067–79. http://dx.doi.org/10.1111/febs.13412.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Sánchez-Navarro, Macarena, Ernest Giralt i Meritxell Teixidó. "Blood–brain barrier peptide shuttles". Current Opinion in Chemical Biology 38 (czerwiec 2017): 134–40. http://dx.doi.org/10.1016/j.cbpa.2017.04.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Ermisch, A., H. J. Rühle, R. Landgraf i J. Hess. "Blood—Brain Barrier and Peptides". Journal of Cerebral Blood Flow & Metabolism 5, nr 3 (wrzesień 1985): 350–57. http://dx.doi.org/10.1038/jcbfm.1985.49.

Pełny tekst źródła
Streszczenie:
The brain is both the source and the recipient of peptide signals. The question is: Do endogenous, blood-borne peptide molecules influence brain function? Brain regions with the tight capillaries of the blood–brain barrier (BBB) extract low but measurable amounts of labeled peptide molecules from an intracarotid bolus injection. In the rat, the extraction fractions of β-casomorphin-5, DesGlyNH2-arginine-vasopressin, arginine-vasopressin, lysine-vasopressin, oxytocin, gonadoliberin, substance P, and β-endorphin, studied in this laboratory, range from 0.5% (substance P) to 2.4% (arginine-vasopressin). Extraction varies little among the 15 examined brain regions. As shown for arginine-vasopressin, the extracted peptides may be bound in part to specific binding sites located on the luminal membrane of the tight endothelial cells. Transport of peptide molecules across the BBB cannot be ruled out, but it is unlikely that endogenous peptides pass the BBB in physiologically significant amounts. In contrast, in brain regions with leaky capillaries, e.g., selected circumventricular organs including the pineal gland, neurohypophysis, and choroid plexus, the peptide fraction extracted approaches that of water. Within the circumventricular organs, the peptide molecules actually reach the cellular elements of the tissue. However, no studies definitively show that peptides reach neurons in the deeper layers of the brain. On the other hand, blood-borne peptides influence the BBB permeability by altering the transport of essential substances. The effect may be mediated by specific peptide binding sites located at the luminal membrane of the endothelium. It is possible that the effect of peptides on the BBB is necessary for proper brain function. There is some evidence that peptides, released centrally into the synaptic clefts as well as peripherally into the bloodstream, support complex brain performances by both of these pathways.
Style APA, Harvard, Vancouver, ISO itp.
46

Bjorklund, Anders, i Clive Svendsen. "Breaking the brain-blood barrier". Nature 397, nr 6720 (luty 1999): 569–70. http://dx.doi.org/10.1038/17495.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Tuomanen, Elaine. "Breaching the Blood-Brain Barrier". Scientific American 268, nr 2 (luty 1993): 80–84. http://dx.doi.org/10.1038/scientificamerican0293-80.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Petrovskaya, A. V., E. P. Barykin, A. M. Tverskoi, K. B. Varshavskaya, V. A. Mitkevich, I. Yu Petrushanko i A. A. Makarov. "Blood–Brain Barrier Transwell Modeling". Molecular Biology 56, nr 6 (grudzień 2022): 1020–27. http://dx.doi.org/10.1134/s0026893322060140.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Hampton, Tracy. "Restoring the Blood-Brain Barrier". JAMA 309, nr 5 (6.02.2013): 431. http://dx.doi.org/10.1001/jama.2013.267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

ÖZTAŞ, BARİA. "SEX AND BLOOD-BRAIN BARRIER". Pharmacological Research 37, nr 3 (marzec 1998): 165–67. http://dx.doi.org/10.1006/phrs.1997.0243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii