Gotowa bibliografia na temat „Blended-wing-body aircraft”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Blended-wing-body aircraft”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Blended-wing-body aircraft"
Qin, N., A. Vavalle, A. Le Moigne, M. Laban, K. Hackett i P. Weinerfelt. "Aerodynamic considerations of blended wing body aircraft". Progress in Aerospace Sciences 40, nr 6 (sierpień 2004): 321–43. http://dx.doi.org/10.1016/j.paerosci.2004.08.001.
Pełny tekst źródłaQin, Ning, Armando Vavalle i Alan Le Moigne. "Spanwise Lift Distribution for Blended Wing Body Aircraft." Journal of Aircraft 42, nr 2 (marzec 2005): 356–65. http://dx.doi.org/10.2514/1.4229.
Pełny tekst źródłaZhu, Wensheng, Xiongqing Yu i Yu Wang. "Layout Optimization for Blended Wing Body Aircraft Structure". International Journal of Aeronautical and Space Sciences 20, nr 4 (16.05.2019): 879–90. http://dx.doi.org/10.1007/s42405-019-00172-7.
Pełny tekst źródłaDimopoulos, Thomas, Pericles Panagiotou i Kyros Yakinthos. "Stability study and flight simulation of a blended-wing-body UAV". MATEC Web of Conferences 304 (2019): 02013. http://dx.doi.org/10.1051/matecconf/201930402013.
Pełny tekst źródłaVelicki, A., i P. Thrash. "Blended wing body structural concept development". Aeronautical Journal 114, nr 1158 (sierpień 2010): 513–19. http://dx.doi.org/10.1017/s0001924000004000.
Pełny tekst źródłaXu, Xin, Qiang Li, Dawei Liu, Keming Cheng i Dehua Chen. "Geometric Effects Analysis and Verification of V-Shaped Support Interference on Blended Wing Body Aircraft". Applied Sciences 10, nr 5 (28.02.2020): 1596. http://dx.doi.org/10.3390/app10051596.
Pełny tekst źródłaRomli, Fairuz Izzuddin, i Mohd Syahidie Kamaruddin. "Emissions Performance Study for Conventional Aircraft Designs". Applied Mechanics and Materials 225 (listopad 2012): 385–90. http://dx.doi.org/10.4028/www.scientific.net/amm.225.385.
Pełny tekst źródłavan Dommelen, Jorrit, i Roelof Vos. "Conceptual design and analysis of blended-wing-body aircraft". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 228, nr 13 (29.01.2014): 2452–74. http://dx.doi.org/10.1177/0954410013518696.
Pełny tekst źródłaHong, Wei Jiang, i Dong Li Ma. "Influence of Control Coupling Effect on Landing Performance of Flying Wing Aircraft". Applied Mechanics and Materials 829 (marzec 2016): 110–17. http://dx.doi.org/10.4028/www.scientific.net/amm.829.110.
Pełny tekst źródłaMulyanto, Taufiq, i M. Luthfi Nurhakim. "CONCEPTUAL DESIGN OF BLENDED WING BODY BUSINESS JET AIRCRAFT". Journal of KONES. Powertrain and Transport 20, nr 4 (1.01.2015): 299–306. http://dx.doi.org/10.5604/12314005.1137630.
Pełny tekst źródłaRozprawy doktorskie na temat "Blended-wing-body aircraft"
Okonkwo, Paulinus Peter Chukwuemeka. "Conceptual design methodology for blended wing body aircraft". Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/10132.
Pełny tekst źródłaIkeda, Toshihiro, i toshi ikeda@gmail com. "Aerodynamic Analysis of a Blended-Wing-Body Aircraft Configuration". RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070122.163030.
Pełny tekst źródłaVavalle, Armando. "Response surface aerodynamic optimisation for blended wing body aircraft". Thesis, Cranfield University, 2005. http://dspace.lib.cranfield.ac.uk/handle/1826/11015.
Pełny tekst źródłaUr, Rahman Naveed. "Propulsion and flight controls integration for the blended wing body aircraft". Thesis, Cranfield University, 2009. http://hdl.handle.net/1826/4095.
Pełny tekst źródłaKays, Cory Asher. "Multidisciplinary methods for performing trade studies on blended wing body aircraft". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82485.
Pełny tekst źródłaThis electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from department-submitted PDF version of thesis
Includes bibliographical references (p. 99-102).
Multidisciplinary design optimization (MDO) is becoming an essential tool for the design of engineering systems due to the inherent coupling between discipline analyses and the increasing complexity of such systems. An important component of MDO is effective exploration of the design space since this is often a key driver in finding characteristics of systems which perform well. However, many design space exploration techniques scale poorly with the number of design variables and, moreover, a large-dimensional design space can be prohibitive to designer manipulation. This research addresses complexity management in trade-space exploration of multidisciplinary systems, with a focus on the conceptual design of Blended Wing Body (BWB) aircraft. The objectives of this thesis are twofold. The first objective is to create a multidisciplinary tool for the design of BWB aircraft and to demonstrate the performance of the tool on several example trade studies. The second objective is to develop a methodology for reducing the dimension of the design space using designer-chosen partitionings of the design variables describing the system. The first half of this thesis describes the development of the BWB design tool and demonstrates its performance via a comparison to existing methods for the conceptual design of an existing BWB configuration. The BWB design tool is then demonstrated using two example design space trades with respect to planform geometry and cabin bay arrangement. Results show that the BWB design tool provides sufficient fidelity compared to existing BWB analyses, while accurately predicting trends in system performance. The second half of this thesis develops a bi-level methodology for reducing the dimension of the design space for a trade space exploration problem. In this methodology, the designer partitions the design vector into an upper- and lower-level set, wherein the lower-level variables essentially serve as parameters, in which their values are chosen via an optimization with respect to some lower-level objective. This reduces the dimension of the design space, thereby allowing a more manageable space for designer interaction, while subsequently ensuring that the lower-level variables are set to "good" values relative to the lower-level objective. The bi-level method is demonstrated on three test problems, each involving an exploration over BWB planform geometries. Results show that the method constructs surrogate models in which the sampled configurations have a reduction in the system objective by up to 4 % relative to surrogates constructed using a standard exploration. Furthermore, the problems highlight the potential for the framework to reduce the dimension of the design space such that the full space can be visualized.
by Cory Asher Kays.
S.M.
Dippold, Vance Fredrick III. "Numerical Assessment of the Performance of Jet-Wing Distributed Propulsion on Blended-Wing-Body Aircraft". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/34878.
Pełny tekst źródłaConventional airliners use two to four engines in a Cayley-type arrangement to provide thrust, and the thrust from these engines is typically concentrated right behind the engine. Distributed propulsion is the idea of redistributing the thrust across most, or all, of the wingspan of an aircraft. This can be accomplished by using several large engines and using a duct to spread out the exhaust flow to form a jet-wing or by using many small engines spaced along the span of the wing. Jet-wing distributed propulsion was originally suggested by Kuchemann as a way to improve propulsive efficiency. In addition, one can envision a jet-wing with deflected jets replacing flaps and slats and the associated noise.
The purpose of this study was to assess the performance benefits of jet-wing distributed propulsion. The Reynolds-averaged, finite-volume, Navier-Stokes code GASP was used to perform parametric computational fluid dynamics (CFD) analyses on two-dimensional jet-wing models. The jet-wing was modeled by applying velocity and density boundary conditions on the trailing edges of blunt trailing edge airfoils such that the vehicle was self-propelled. As this work was part of a Blended-Wing-Body (BWB) distributed propulsion multidisciplinary optimization (MDO) study, two airfoils of different thickness were modeled at BWB cruise conditions. One airfoil, representative of an outboard BWB wing section, was 11% thick. The other airfoil, representative of an inboard BWB wing section, was 18% thick. Furthermore, in an attempt to increase the propulsive efficiency, the trailing edge thickness of the 11% thick airfoil was doubled in size. The studies show that jet-wing distributed propulsion can be used to obtain propulsive efficiencies on the order of turbofan engine aircraft. If the trailing edge thickness is expanded, then jet-wing distributed propulsion can give improved propulsive efficiency. However, expanding the trailing edge must be done with care, as there is a drag penalty. Jet-wing studies were also performed at lower Reynolds numbers, typical of UAV-sized aircraft, and they showed reduced propulsive efficiency performance. At the lower Reynolds number, it was found that the lift, drag, and pitching moment coefficients varied nearly linearly for small jet-flap deflection angles.
Master of Science
Ko, Yan-Yee Andy. "The Multidisciplinary Design Optimization of a Distributed Propulsion Blended-Wing-Body Aircraft". Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/27257.
Pełny tekst źródłaPh. D.
van, Wyk David. "Guidance, navigation and control of a small, unmanned blended wing body aircraft". Master's thesis, Faculty of Engineering and the Built Environment, 2020. http://hdl.handle.net/11427/32426.
Pełny tekst źródłade, Castro Helena V. "Flying and handling qualities of a fly-by-wire blended-wing-body civil transport aircraft". Thesis, Cranfield University, 2003. http://hdl.handle.net/1826/119.
Pełny tekst źródłaHanlon, Christopher J. (Christopher Joseph) 1978. "Engine design implications for a blended wing-body aircraft with boundary later ingestion". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/82759.
Pełny tekst źródłaKsiążki na temat "Blended-wing-body aircraft"
Kozek, Martin, i Alexander Schirrer, red. Modeling and Control for a Blended Wing Body Aircraft. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10792-9.
Pełny tekst źródłaKozek, Martin, i Alexander Schirrer. Modeling and Control for a Blended Wing Body Aircraft: A Case Study. Springer, 2016.
Znajdź pełny tekst źródłaHallion, Richard, i Bruce Larrimer. Beyond Tube-And-Wing: The X-48 Blended Wing-Body and NASA's Quest to Reshape Future Transport Aircraft. National Aeronautics and Space Administration, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Blended-wing-body aircraft"
Kozek, M., A. Schirrer, B. Mohr, D. Paulus, T. Salmon, M. Hornung, C. Rößler, F. Stroscher i A. Seitz. "Overview and Motivation". W Modeling and Control for a Blended Wing Body Aircraft, 1–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10792-9_1.
Pełny tekst źródłaBaier, H., M. Hornung, B. Mohr, D. Paulus, Ö. Petersson, C. Rößler, F. Stroscher i T. Salmon. "Conceptual Design". W Modeling and Control for a Blended Wing Body Aircraft, 29–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10792-9_2.
Pełny tekst źródłaStroscher, F., A. Schirrer, M. Valášek, Z. Šika, T. Vampola, B. Paluch, D. Joly i in. "Numerical Simulation Model". W Modeling and Control for a Blended Wing Body Aircraft, 47–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10792-9_3.
Pełny tekst źródłaValášek, M., Z. Šika, T. Vampola i S. Hecker. "Reduced-Order Modeling". W Modeling and Control for a Blended Wing Body Aircraft, 105–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10792-9_4.
Pełny tekst źródłaWestermayer, C., i A. Schirrer. "Control Goals". W Modeling and Control for a Blended Wing Body Aircraft, 131–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10792-9_5.
Pełny tekst źródłaSchirrer, A., M. Kozek, F. Demourant i G. Ferreres. "Feedback Control Designs". W Modeling and Control for a Blended Wing Body Aircraft, 147–226. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10792-9_6.
Pełny tekst źródłaHaniš, T., M. Hromčík, A. Schirrer, M. Kozek i C. Westermayer. "Feed-Forward Control Designs". W Modeling and Control for a Blended Wing Body Aircraft, 227–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10792-9_7.
Pełny tekst źródłaKozek, M., A. Schirrer, F. Stroscher, M. Valášek, Z. Šika, T. Vampola, T. Belschner i A. Wildschek. "Validation, Discussion and Outlook". W Modeling and Control for a Blended Wing Body Aircraft, 267–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10792-9_8.
Pełny tekst źródłaSchirrer, Alexander, Martin Kozek i Stefan Jakubek. "Convex Design for Lateral Control of a Blended Wing Body Aircraft". W Mechanics and Model-Based Control of Advanced Engineering Systems, 255–64. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1571-8_28.
Pełny tekst źródłaGalea, E. R., L. Filippidis, Z. Wang, P. J. Lawrence i J. Ewer. "Evacuation Analysis of 1000+ Seat Blended Wing Body Aircraft Configurations: Computer Simulations and Full-scale Evacuation Experiment". W Pedestrian and Evacuation Dynamics, 151–61. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9725-8_14.
Pełny tekst źródłaStreszczenia konferencji na temat "Blended-wing-body aircraft"
Qin, N. "Aerodynamic Studies for Blended Wing Body Aircraft". W 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-5448.
Pełny tekst źródłaGuo, Yueping, Casey L. Burley i Russell H. Thomas. "On Noise Assessment for Blended Wing Body Aircraft". W 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0365.
Pełny tekst źródłaPeigin, Sergey, i Boris Epstein. "CFD Driven Optimization of Blended Wing Body Aircraft". W 24th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3457.
Pełny tekst źródłaPeterson, Tim, i Peter Grant. "Handling Qualities of a Blended Wing Body Aircraft". W AIAA Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-6542.
Pełny tekst źródłaWeil Brenner, Martin, Jean-yves Trepanier, Christophe Tribes i Eddy Petro. "Conceptual Design Framework for Blended Wing Body Aircraft". W 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-5649.
Pełny tekst źródłaLyu, Zhoujie, i Joaquim R. R. A. Martins. "Aerodynamic Shape Optimization of a Blended-Wing-Body Aircraft". W 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-283.
Pełny tekst źródłaGuo, Yueping, Michael Czech i Russell H. Thomas. "Open Rotor Noise Shielding by Blended-Wing-Body Aircraft". W 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1214.
Pełny tekst źródłaSingh, Garima, Vassili Toropov i James Eves. "Topology Optimization of a Blended-Wing-Body Aircraft Structure". W 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3364.
Pełny tekst źródłaBrown, Malcom, i Roelof Vos. "Conceptual Design and Evaluation of Blended-Wing Body Aircraft". W 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0522.
Pełny tekst źródłaYi, Jian, Xin-min Dong, Yong Chen, Jian-hui Zhi, Bing-xu Zhou i Xian-chi Huang. "Nonlinear Control Allocation for a Blended Wing Body Aircraft". W 2016 International Conference on Electrical Engineering and Automation (EEA2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813220362_0073.
Pełny tekst źródła