Gotowa bibliografia na temat „BLADE STRUCTURAL CHARACTERISTICS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „BLADE STRUCTURAL CHARACTERISTICS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "BLADE STRUCTURAL CHARACTERISTICS"
Li, Chaofeng, Shihua Zhou, Shuhua Yang, Xiang Ren i Bangchun Wen. "Dynamic Characteristics of Blade-Disk-Rotor System with Structural Mistuned Features". Open Mechanical Engineering Journal 8, nr 1 (18.04.2014): 138–43. http://dx.doi.org/10.2174/1874155x20140501008.
Pełny tekst źródłaXing, Zhitai, Yan Jia, Lei Zhang, Xiaowen Song, Yanfeng Zhang, Jianxin Wu, Zekun Wang, Jicai Guo i Qingan Li. "Research on Wind Turbine Blade Damage Fault Diagnosis Based on GH Bladed". Journal of Marine Science and Engineering 11, nr 6 (26.05.2023): 1126. http://dx.doi.org/10.3390/jmse11061126.
Pełny tekst źródłaXu, Lin, Wen Lei Sun i An Wu. "Structural Properties Analysis of Composite Wind Turbine Blade". Key Engineering Materials 522 (sierpień 2012): 602–5. http://dx.doi.org/10.4028/www.scientific.net/kem.522.602.
Pełny tekst źródłaChetan, Mayank, Shulong Yao i D. Todd Griffith. "Flutter behavior of highly flexible blades for two- and three-bladed wind turbines". Wind Energy Science 7, nr 4 (22.08.2022): 1731–51. http://dx.doi.org/10.5194/wes-7-1731-2022.
Pełny tekst źródłaRogge, Timo, Ricarda Berger, Linus Pohle, Raimund Rolfes i Jörg Wallaschek. "Efficient structural analysis of gas turbine blades". Aircraft Engineering and Aerospace Technology 90, nr 9 (14.11.2018): 1305–16. http://dx.doi.org/10.1108/aeat-05-2016-0085.
Pełny tekst źródłaLiang, Zhi Chao, Jie Hong, Yan Hong Ma i Tian Yuan He. "FEM Modeling Technology and Vibration Analysis of Flexible Rotor System". Applied Mechanics and Materials 226-228 (listopad 2012): 257–61. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.257.
Pełny tekst źródłaMignolet, M. P., A. J. Rivas-Guerra i J. P. Delor. "Identification of Mistuning Characteristics of Bladed Disks From Free Response Data—Part I". Journal of Engineering for Gas Turbines and Power 123, nr 2 (9.06.1999): 395–403. http://dx.doi.org/10.1115/1.1338949.
Pełny tekst źródłaAleshin, Mikhail, Aleksandr Smirnov, Margarita Murzina i Yuri Boldyrev. "On Structural Optimization of The Propeller Blade". International Journal of Engineering & Technology 7, nr 4.36 (1.12.2018): 1203. http://dx.doi.org/10.14419/ijet.v7i4.36.28189.
Pełny tekst źródłaAleshin, Mikhail, Aleksandr Smirnov, Margarita Murzina i Yuri Boldyrev. "On Structural Optimization of the Propeller Blade". International Journal of Engineering & Technology 7, nr 4.36 (9.12.2018): 1203. http://dx.doi.org/10.14419/ijet.v7i4.36.28212.
Pełny tekst źródłaPetukhov, A. N., i F. D. Kiselev. "THE IMPACT OF STRESS CONCENTRATORS ON THE STRUCTURAL STRENGTH OF CAST TURBINE BLADES OF AIRCRAFT ENGINES". Industrial laboratory. Diagnostics of materials 85, nr 5 (5.06.2019): 52–66. http://dx.doi.org/10.26896/1028-6861-2019-85-5-52-66.
Pełny tekst źródłaRozprawy doktorskie na temat "BLADE STRUCTURAL CHARACTERISTICS"
Heath, Steven. "A study of tip-timing measurement techniques for the determination of bladed-disk vibration characteristics". Thesis, Imperial College London, 1997. http://hdl.handle.net/10044/1/44221.
Pełny tekst źródłaMarsh, PJ. "The hydrodynamic and structural loading characteristics of straight and helical-bladed vertical axis tidal and current flow turbines". Thesis, 2015. https://eprints.utas.edu.au/23169/2/Marsh_whole_thesis_ex_pub_mat.pdf.
Pełny tekst źródłaChen, Jyun-Yu, i 陳俊羽. "Combined Experimental and Numerical Study on the Flow Structure and Aerodynamic Characteristics of the Wavy Leading-edge Blade Applied on the VAWT". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/92sdgs.
Pełny tekst źródła國立虎尾科技大學
飛機工程系航空與電子科技碩士班
105
Humpback whales utilize extremely mobile, wing-like flipper for banking and turning. The tubercles on the leading edge act as passive-flow control devices that improve performance and maneuverability of flipper. Theexperiment and 3-D numerical simulation are performed in this study to thoroughly investigate the flow structure and aerodynamic characteristics of 3-blade VAWT applyingthe designed wavy wing with different amplitude, wave lengthand aspect ratio, which is simulated from the tubercles flipper on humpback whales. For the static single blade cases withV∞=12m/s, the flow separation is stronger at the wave trough than at the wave crest due to the counter-rotating vortex induced by the flow pass through the wavy leading edge. Comparing with the smooth leading edge, the lift coefficient of wavy wing is lower in low angle of attack, but is superior at higher angle of attack. The effect of the wavy wing strongly depends on the wave length and amplitude of the wavy leading edge. For higher wave length cases, the average lift is rise as amplitude isincreased. Similarly, the improvement is more obvious for lower wave length case as amplitude is decreased. For the three blades vertical axis wind turbine cases withV∞=6m/s, R/c=1.726, 0.05c ≦ A ≦to 0.3c, 0.5c≦ WL ≦ to 3c and tip speed ratio 0.095≦ TSR≦1,the wind turbineperformance of wavy wing is obviouslyimproved.Comparing with the smooth leading edge, the maximum average torque coefficient CQ enhancement of wavy wing with amplitude variationare20.02%, 22.66%, 26.05%, 19.15%, 16.72%, 6.91% as TSR=0.095, 0.191, 0.287, 0.383, 0.5, 1 respectively.The maximum average torque coefficient CQ enhancement of wavy wing with wave length variationare23.89%, 22.23%, 13.52%, 12.71%, 12.56%, -0.29% as TSR=0.095, 0.191, 0.287, 0.383, 0.5, 1 respectively. The wind turbine power analysis also implemented with numerical simulation and wind tunnel measurement. Comparing with the smooth leading edge, the maximum power enhancement of wavy wing with amplitude variationare40.05%, 39.63%, 24.91%, 22.02% as TSR=0.05, 0.06, 0.07, 0.08 respectively with numericalsimulation; and the enhancements are40.31%, 44.65%, 37.34%, 48.88% as TSR=0.05, 0.06, 0.07, 0.08 respectivelywith wind tunnel measurement.
Książki na temat "BLADE STRUCTURAL CHARACTERISTICS"
Lake, Renee C. Experimental and analytical investigation of dynamic characteristics of extension-twist-coupled composite tubular spars. Hampton, Va: Langley Research Center, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "BLADE STRUCTURAL CHARACTERISTICS"
Sydorenko, Ihor, Vladimir Tonkonogyi, Yuliia Babych, Yuliia Barchanova i Zhang Yiheng. "Operating Characteristics of Lever-Blade Shock Absorbers with the Extended Mechanical Structure". W Advances in Design, Simulation and Manufacturing III, 95–104. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50491-5_10.
Pełny tekst źródłaLu, Xuxiang, Wenjun Huang, Luping Li i Shuhong Huang. "Damping Vibration Characteristics of Frictional Damping Structure in Steam Turbine Integrally Shrouded Blades". W Challenges of Power Engineering and Environment, 320–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76694-0_57.
Pełny tekst źródłaHu, Shan Shan, Ying Ning Hu, Cheng Yong Wang i Chang Xiong Chen. "Vibration Characteristic Analysis of Diamond Saw Blade with Multitude Holes Structure for Vibration and Noise Reduction". W Advances in Grinding and Abrasive Technology XIV, 78–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.78.
Pełny tekst źródłaLi, Lu, Chenhao Li, Xingqi Luo, Jianjun Feng i Guojun Zhu. "Effect of Radial Guide Vane Optimization on the Performance of Multistage Centrifugal Pump". W Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220951.
Pełny tekst źródłaYamashita, Y., K. Shiohata, T. Kudo i H. Yoda. "Vibration characteristics of a continuous cover blade structure with friction contact surfaces of a steam turbine". W 10th International Conference on Vibrations in Rotating Machinery, 323–32. Elsevier, 2012. http://dx.doi.org/10.1533/9780857094537.4.323.
Pełny tekst źródłaDel Percio, Enrique. "Argentina: The Philosophical Resistance to the Conquest of the Soul1". W A Post-Neoliberal Era in Latin America?, 159–76. Policy Press, 2019. http://dx.doi.org/10.1332/policypress/9781529200997.003.0008.
Pełny tekst źródłaStreszczenia konferencji na temat "BLADE STRUCTURAL CHARACTERISTICS"
PIERRE, CHRISTOPHE, i DURBHA MURTHY. "Aeroelastic modal characteristics of mistuned blade assemblies - Mode localization and loss of eigenstructure". W 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1218.
Pełny tekst źródłaDesmond, Michael, i Darris White. "Predictions of Structural Testing Characteristics for Wind Turbine Blades". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12288.
Pełny tekst źródłaMin, James, Donald Harris i Joseph Ting. "Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications". W 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1784.
Pełny tekst źródłaSatish Kumar, Subramani, Ranjan Ganguli, Siddanagouda Basanagouda Kandagal i Soumendu Jana. "Structural Dynamic Behavior of Axial Compressor Rotor". W ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4715.
Pełny tekst źródłaAkiyama, Ryou, Koki Shiohata, Tomomi Nakajima i Yutaka Yamashita. "Damping Characteristics of Non-Synchronous Turbine Blade Vibration". W ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46416.
Pełny tekst źródłaLiang, Daosen, Rui Zhang, Yulin Wu, Zichu Jia, Zhifu Cao i Jianyao Yao. "High fidelity finite element model updating and deviation characterization method for geometric mistuned bladed disks". W GPPS Xi'an21. GPPS, 2022. http://dx.doi.org/10.33737/gpps21-tc-360.
Pełny tekst źródłaFörsching, H. "A Parametric Study of the Flutter Stability Characteristics of Turbomachine Cascades". W ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-260.
Pełny tekst źródłaZhang, Mingming, Anping Hou, Sheng Zhou i Xiaodong Yang. "Analysis on Flutter Characteristics of Transonic Compressor Blade Row by a Fluid-Structure Coupled Method". W ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69439.
Pełny tekst źródłaHeath, Steve, i Mehmet Imregun. "Determination of Rotating Assembly Synchronous Response Characteristics Using Blade Tip-Timing Techniques". W ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0534.
Pełny tekst źródłaMignolet, Marc P., i Alejandro Rivas-Guerra. "Identification of Mistuning Characteristics of Bladed Disks From Free Response Data". W ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-583.
Pełny tekst źródła