Artykuły w czasopismach na temat „Black-box learning algorithm”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Black-box learning algorithm”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hwangbo, Jemin, Christian Gehring, Hannes Sommer, Roland Siegwart i Jonas Buchli. "Policy Learning with an Efficient Black-Box Optimization Algorithm". International Journal of Humanoid Robotics 12, nr 03 (wrzesień 2015): 1550029. http://dx.doi.org/10.1142/s0219843615500292.
Pełny tekst źródłaKirsch, Louis, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh i Yutian Chen. "Introducing Symmetries to Black Box Meta Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 7 (28.06.2022): 7202–10. http://dx.doi.org/10.1609/aaai.v36i7.20681.
Pełny tekst źródłaXiang, Fengtao, Jiahui Xu, Wanpeng Zhang i Weidong Wang. "A Distributed Biased Boundary Attack Method in Black-Box Attack". Applied Sciences 11, nr 21 (8.11.2021): 10479. http://dx.doi.org/10.3390/app112110479.
Pełny tekst źródłaLIU, Yanhe, Michael AFNAN, Vincent CONTIZER, Cynthia RUDIN, Abhishek MISHRA, Julian SAVULESCU i Masoud AFNAN. "Embryo Selection by “Black-Box” Artificial Intelligence: The Ethical and Epistemic Considerations". Fertility & Reproduction 04, nr 03n04 (wrzesień 2022): 147. http://dx.doi.org/10.1142/s2661318222740590.
Pełny tekst źródłaBausch, Johannes. "Fast Black-Box Quantum State Preparation". Quantum 6 (4.08.2022): 773. http://dx.doi.org/10.22331/q-2022-08-04-773.
Pełny tekst źródłaMIKE, KOBY, i ORIT HAZZAN. "MACHINE LEARNING FOR NON-MAJORS: A WHITE BOX APPROACH". STATISTICS EDUCATION RESEARCH JOURNAL 21, nr 2 (4.07.2022): 10. http://dx.doi.org/10.52041/serj.v21i2.45.
Pełny tekst źródłaGarcía, Javier, Roberto Iglesias, Miguel A. Rodríguez i Carlos V. Regueiro. "Directed Exploration in Black-Box Optimization for Multi-Objective Reinforcement Learning". International Journal of Information Technology & Decision Making 18, nr 03 (maj 2019): 1045–82. http://dx.doi.org/10.1142/s0219622019500093.
Pełny tekst źródłaMayr, Franz, Sergio Yovine i Ramiro Visca. "Property Checking with Interpretable Error Characterization for Recurrent Neural Networks". Machine Learning and Knowledge Extraction 3, nr 1 (12.02.2021): 205–27. http://dx.doi.org/10.3390/make3010010.
Pełny tekst źródłaAnđelić, Nikola, Ivan Lorencin, Matko Glučina i Zlatan Car. "Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms". Electronics 11, nr 16 (21.08.2022): 2623. http://dx.doi.org/10.3390/electronics11162623.
Pełny tekst źródłaVeugen, Thijs, Bart Kamphorst i Michiel Marcus. "Privacy-Preserving Contrastive Explanations with Local Foil Trees". Cryptography 6, nr 4 (28.10.2022): 54. http://dx.doi.org/10.3390/cryptography6040054.
Pełny tekst źródłaPulatov, Damir, i Lars Kotthoff. "Opening the Black Box: Automatically Characterizing Software for Algorithm Selection (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 10 (3.04.2020): 13899–900. http://dx.doi.org/10.1609/aaai.v34i10.7222.
Pełny tekst źródłaBALL, NICHOLAS M., i ROBERT J. BRUNNER. "DATA MINING AND MACHINE LEARNING IN ASTRONOMY". International Journal of Modern Physics D 19, nr 07 (lipiec 2010): 1049–106. http://dx.doi.org/10.1142/s0218271810017160.
Pełny tekst źródłaYu, Wen, i Francisco Vega. "Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells". Journal of Intelligent & Fuzzy Systems 39, nr 3 (7.10.2020): 4547–56. http://dx.doi.org/10.3233/jifs-200491.
Pełny tekst źródłaMuñoz, Mario Andrés, i Michael Kirley. "Sampling Effects on Algorithm Selection for Continuous Black-Box Optimization". Algorithms 14, nr 1 (11.01.2021): 19. http://dx.doi.org/10.3390/a14010019.
Pełny tekst źródłaMuñoz, Mario Andrés, i Michael Kirley. "Sampling Effects on Algorithm Selection for Continuous Black-Box Optimization". Algorithms 14, nr 1 (11.01.2021): 19. http://dx.doi.org/10.3390/a14010019.
Pełny tekst źródłaŽlahtič, Bojan, Jernej Završnik, Helena Blažun Vošner, Peter Kokol, David Šuran i Tadej Završnik. "Agile Machine Learning Model Development Using Data Canyons in Medicine: A Step towards Explainable Artificial Intelligence and Flexible Expert-Based Model Improvement". Applied Sciences 13, nr 14 (19.07.2023): 8329. http://dx.doi.org/10.3390/app13148329.
Pełny tekst źródłaHOLZINGER, ANDREAS, MARKUS PLASS, KATHARINA HOLZINGER, GLORIA CERASELA CRIS¸AN, CAMELIA-M. PINTEA i VASILE PALADE. "A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop". Creative Mathematics and Informatics 28, nr 2 (20.06.2019): 121–34. http://dx.doi.org/10.37193/cmi.2019.02.04.
Pełny tekst źródłaSaokani, Ukan, Mohamad Irfan, Dian Sa'adillah Maylawati, Rachmat Jaenal Abidin, Ichsan Taufik i Riyan Naufal Hay's. "Comparison of the Fisher-Yates Shuffle and the Linear Congruent Algorithm for Randomizing Questions in Nahwu Learning Multimedia". Khazanah Journal of Religion and Technology 1, nr 1 (1.06.2023): 10–14. http://dx.doi.org/10.15575/kjrt.v1i1.159.
Pełny tekst źródłaWongvibulsin, Shannon, Katherine C. Wu i Scott L. Zeger. "Improving Clinical Translation of Machine Learning Approaches Through Clinician-Tailored Visual Displays of Black Box Algorithms: Development and Validation". JMIR Medical Informatics 8, nr 6 (9.06.2020): e15791. http://dx.doi.org/10.2196/15791.
Pełny tekst źródłaLu, Li, Yizhong Wu, Qi Zhang i Ping Qiao. "A Transformation-Based Improved Kriging Method for the Black Box Problem in Reliability-Based Design Optimization". Mathematics 11, nr 1 (1.01.2023): 218. http://dx.doi.org/10.3390/math11010218.
Pełny tekst źródłaKerschke, Pascal, i Heike Trautmann. "Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning". Evolutionary Computation 27, nr 1 (marzec 2019): 99–127. http://dx.doi.org/10.1162/evco_a_00236.
Pełny tekst źródłaPossatto, André Bina. "Painting the black box white: Interpreting an algorithm-based trading strategy". Brazilian Review of Finance 20, nr 3 (11.09.2022): 105–38. http://dx.doi.org/10.12660/rbfin.v20n3.2022.81999.
Pełny tekst źródłaVerma, Pulkit, Shashank Rao Marpally i Siddharth Srivastava. "Asking the Right Questions: Learning Interpretable Action Models Through Query Answering". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 13 (18.05.2021): 12024–33. http://dx.doi.org/10.1609/aaai.v35i13.17428.
Pełny tekst źródłaZhu, Mingzhe, Jie Cheng, Tao Lei, Zhenpeng Feng, Xianda Zhou, Yuanjing Liu i Zhihan Chen. "C-RISE: A Post-Hoc Interpretation Method of Black-Box Models for SAR ATR". Remote Sensing 15, nr 12 (14.06.2023): 3103. http://dx.doi.org/10.3390/rs15123103.
Pełny tekst źródłaSudry, Matan, i Erez Karpas. "Learning to Estimate Search Progress Using Sequence of States". Proceedings of the International Conference on Automated Planning and Scheduling 32 (13.06.2022): 362–70. http://dx.doi.org/10.1609/icaps.v32i1.19821.
Pełny tekst źródłaEnglert, Peter, i Marc Toussaint. "Learning manipulation skills from a single demonstration". International Journal of Robotics Research 37, nr 1 (5.12.2017): 137–54. http://dx.doi.org/10.1177/0278364917743795.
Pełny tekst źródłaYuan, Mu, Lan Zhang i Xiang-Yang Li. "MLink: Linking Black-Box Models for Collaborative Multi-Model Inference". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 9 (28.06.2022): 9475–83. http://dx.doi.org/10.1609/aaai.v36i9.21180.
Pełny tekst źródłaWang, Fangwei, Yuanyuan Lu, Changguang Wang i Qingru Li. "Binary Black-Box Adversarial Attacks with Evolutionary Learning against IoT Malware Detection". Wireless Communications and Mobile Computing 2021 (30.08.2021): 1–9. http://dx.doi.org/10.1155/2021/8736946.
Pełny tekst źródłaCretu, Andrei. "Learning the Ashby Box: an experiment in second order cybernetic modeling". Kybernetes 49, nr 8 (23.11.2019): 2073–90. http://dx.doi.org/10.1108/k-06-2019-0439.
Pełny tekst źródłaLi, Zun, i Michael Wellman. "Structure Learning for Approximate Solution of Many-Player Games". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 02 (3.04.2020): 2119–27. http://dx.doi.org/10.1609/aaai.v34i02.5586.
Pełny tekst źródłaShahpouri, Saeid, Armin Norouzi, Christopher Hayduk, Reza Rezaei, Mahdi Shahbakhti i Charles Robert Koch. "Hybrid Machine Learning Approaches and a Systematic Model Selection Process for Predicting Soot Emissions in Compression Ignition Engines". Energies 14, nr 23 (24.11.2021): 7865. http://dx.doi.org/10.3390/en14237865.
Pełny tekst źródłaBizzo, Bernardo C., Shadi Ebrahimian, Mark E. Walters, Mark H. Michalski, Katherine P. Andriole, Keith J. Dreyer, Mannudeep K. Kalra, Tarik Alkasab i Subba R. Digumarthy. "Validation pipeline for machine learning algorithm assessment for multiple vendors". PLOS ONE 17, nr 4 (29.04.2022): e0267213. http://dx.doi.org/10.1371/journal.pone.0267213.
Pełny tekst źródłaMcTavish, Hayden, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques Chen, Cynthia Rudin i Margo Seltzer. "Fast Sparse Decision Tree Optimization via Reference Ensembles". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 9 (28.06.2022): 9604–13. http://dx.doi.org/10.1609/aaai.v36i9.21194.
Pełny tekst źródłaVan Calster, Ben, Laure Wynants, Dirk Timmerman, Ewout W. Steyerberg i Gary S. Collins. "Predictive analytics in health care: how can we know it works?" Journal of the American Medical Informatics Association 26, nr 12 (2.08.2019): 1651–54. http://dx.doi.org/10.1093/jamia/ocz130.
Pełny tekst źródłaYin, Yiqiao, i Yash Bingi. "Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance". BioMedInformatics 3, nr 2 (1.04.2023): 280–98. http://dx.doi.org/10.3390/biomedinformatics3020019.
Pełny tekst źródłaAslam, Nida, Irfan Ullah Khan, Samiha Mirza, Alanoud AlOwayed, Fatima M. Anis, Reef M. Aljuaid i Reham Baageel. "Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI)". Sustainability 14, nr 12 (16.06.2022): 7375. http://dx.doi.org/10.3390/su14127375.
Pełny tekst źródłaSoucha, Michal, i Kirill Bogdanov. "Observation Tree Approach: Active Learning Relying on Testing". Computer Journal 63, nr 9 (3.07.2019): 1298–310. http://dx.doi.org/10.1093/comjnl/bxz056.
Pełny tekst źródłaPatil, Vishakha, Ganesh Ghalme, Vineet Nair i Y. Narahari. "Achieving Fairness in the Stochastic Multi-Armed Bandit Problem". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 5379–86. http://dx.doi.org/10.1609/aaai.v34i04.5986.
Pełny tekst źródłaLi, Yuancheng, i Yimeng Wang. "Defense Against Adversarial Attacks in Deep Learning". Applied Sciences 9, nr 1 (26.12.2018): 76. http://dx.doi.org/10.3390/app9010076.
Pełny tekst źródłaSamaras, Agorastos-Dimitrios, Serafeim Moustakidis, Ioannis D. Apostolopoulos, Elpiniki Papageorgiou i Nikolaos Papandrianos. "Uncovering the Black Box of Coronary Artery Disease Diagnosis: The Significance of Explainability in Predictive Models". Applied Sciences 13, nr 14 (12.07.2023): 8120. http://dx.doi.org/10.3390/app13148120.
Pełny tekst źródłaRutten, Daan, i Debankur Mukherjee. "Capacity Scaling Augmented With Unreliable Machine Learning Predictions". ACM SIGMETRICS Performance Evaluation Review 49, nr 2 (17.01.2022): 24–26. http://dx.doi.org/10.1145/3512798.3512808.
Pełny tekst źródłaOtt, Simon, Adriano Barbosa-Silva i Matthias Samwald. "LinkExplorer: predicting, explaining and exploring links in large biomedical knowledge graphs". Bioinformatics 38, nr 8 (9.02.2022): 2371–73. http://dx.doi.org/10.1093/bioinformatics/btac068.
Pełny tekst źródłaWang, Yanan, Xuebing Han, Languang Lu, Yangquan Chen i Minggao Ouyang. "Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge". Fractal and Fractional 6, nr 11 (2.11.2022): 640. http://dx.doi.org/10.3390/fractalfract6110640.
Pełny tekst źródłaKammüller, Florian, i Dimpy Satija. "Explanation of Student Attendance AI Prediction with the Isabelle Infrastructure Framework". Information 14, nr 8 (10.08.2023): 453. http://dx.doi.org/10.3390/info14080453.
Pełny tekst źródłaSalih, Dhiadeen Mohammed, Samsul Bahari Mohd Noor, Mohammad Hamiruce Merhaban i Raja Mohd Kamil. "Wavelet Network: Online Sequential Extreme Learning Machine for Nonlinear Dynamic Systems Identification". Advances in Artificial Intelligence 2015 (20.09.2015): 1–10. http://dx.doi.org/10.1155/2015/184318.
Pełny tekst źródłaLuong, Ngoc Hoang, Han La Poutré i Peter A. N. Bosman. "Exploiting Linkage Information and Problem-Specific Knowledge in Evolutionary Distribution Network Expansion Planning". Evolutionary Computation 26, nr 3 (wrzesień 2018): 471–505. http://dx.doi.org/10.1162/evco_a_00209.
Pełny tekst źródłaYiğit, Tuncay, Nilgün Şengöz, Özlem Özmen, Jude Hemanth i Ali Hakan Işık. "Diagnosis of Paratuberculosis in Histopathological Images Based on Explainable Artificial Intelligence and Deep Learning". Traitement du Signal 39, nr 3 (30.06.2022): 863–69. http://dx.doi.org/10.18280/ts.390311.
Pełny tekst źródłaDu, Xiaohu, Jie Yu, Zibo Yi, Shasha Li, Jun Ma, Yusong Tan i Qinbo Wu. "A Hybrid Adversarial Attack for Different Application Scenarios". Applied Sciences 10, nr 10 (21.05.2020): 3559. http://dx.doi.org/10.3390/app10103559.
Pełny tekst źródłaSaleem, Sobia, Marcus Gallagher i Ian Wood. "Direct Feature Evaluation in Black-Box Optimization Using Problem Transformations". Evolutionary Computation 27, nr 1 (marzec 2019): 75–98. http://dx.doi.org/10.1162/evco_a_00247.
Pełny tekst źródłaBarkalov, Konstantin, Ilya Lebedev i Evgeny Kozinov. "Acceleration of Global Optimization Algorithm by Detecting Local Extrema Based on Machine Learning". Entropy 23, nr 10 (28.09.2021): 1272. http://dx.doi.org/10.3390/e23101272.
Pełny tekst źródła