Artykuły w czasopismach na temat „Black-box learning algorithm”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Black-box learning algorithm”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hwangbo, Jemin, Christian Gehring, Hannes Sommer, Roland Siegwart, and Jonas Buchli. "Policy Learning with an Efficient Black-Box Optimization Algorithm." International Journal of Humanoid Robotics 12, no. 03 (2015): 1550029. http://dx.doi.org/10.1142/s0219843615500292.
Pełny tekst źródłaKirsch, Louis, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh, and Yutian Chen. "Introducing Symmetries to Black Box Meta Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (2022): 7202–10. http://dx.doi.org/10.1609/aaai.v36i7.20681.
Pełny tekst źródłaXiang, Fengtao, Jiahui Xu, Wanpeng Zhang, and Weidong Wang. "A Distributed Biased Boundary Attack Method in Black-Box Attack." Applied Sciences 11, no. 21 (2021): 10479. http://dx.doi.org/10.3390/app112110479.
Pełny tekst źródłaLIU, Yanhe, Michael AFNAN, Vincent CONTIZER, et al. "Embryo Selection by “Black-Box” Artificial Intelligence: The Ethical and Epistemic Considerations." Fertility & Reproduction 04, no. 03n04 (2022): 147. http://dx.doi.org/10.1142/s2661318222740590.
Pełny tekst źródłaBausch, Johannes. "Fast Black-Box Quantum State Preparation." Quantum 6 (August 4, 2022): 773. http://dx.doi.org/10.22331/q-2022-08-04-773.
Pełny tekst źródłaMIKE, KOBY, and ORIT HAZZAN. "MACHINE LEARNING FOR NON-MAJORS: A WHITE BOX APPROACH." STATISTICS EDUCATION RESEARCH JOURNAL 21, no. 2 (2022): 10. http://dx.doi.org/10.52041/serj.v21i2.45.
Pełny tekst źródłaGarcía, Javier, Roberto Iglesias, Miguel A. Rodríguez, and Carlos V. Regueiro. "Directed Exploration in Black-Box Optimization for Multi-Objective Reinforcement Learning." International Journal of Information Technology & Decision Making 18, no. 03 (2019): 1045–82. http://dx.doi.org/10.1142/s0219622019500093.
Pełny tekst źródłaMayr, Franz, Sergio Yovine, and Ramiro Visca. "Property Checking with Interpretable Error Characterization for Recurrent Neural Networks." Machine Learning and Knowledge Extraction 3, no. 1 (2021): 205–27. http://dx.doi.org/10.3390/make3010010.
Pełny tekst źródłaAnđelić, Nikola, Ivan Lorencin, Matko Glučina, and Zlatan Car. "Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms." Electronics 11, no. 16 (2022): 2623. http://dx.doi.org/10.3390/electronics11162623.
Pełny tekst źródłaVeugen, Thijs, Bart Kamphorst, and Michiel Marcus. "Privacy-Preserving Contrastive Explanations with Local Foil Trees." Cryptography 6, no. 4 (2022): 54. http://dx.doi.org/10.3390/cryptography6040054.
Pełny tekst źródłaPulatov, Damir, and Lars Kotthoff. "Opening the Black Box: Automatically Characterizing Software for Algorithm Selection (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (2020): 13899–900. http://dx.doi.org/10.1609/aaai.v34i10.7222.
Pełny tekst źródłaBALL, NICHOLAS M., and ROBERT J. BRUNNER. "DATA MINING AND MACHINE LEARNING IN ASTRONOMY." International Journal of Modern Physics D 19, no. 07 (2010): 1049–106. http://dx.doi.org/10.1142/s0218271810017160.
Pełny tekst źródłaYu, Wen, and Francisco Vega. "Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells." Journal of Intelligent & Fuzzy Systems 39, no. 3 (2020): 4547–56. http://dx.doi.org/10.3233/jifs-200491.
Pełny tekst źródłaMuñoz, Mario Andrés, and Michael Kirley. "Sampling Effects on Algorithm Selection for Continuous Black-Box Optimization." Algorithms 14, no. 1 (2021): 19. http://dx.doi.org/10.3390/a14010019.
Pełny tekst źródłaMuñoz, Mario Andrés, and Michael Kirley. "Sampling Effects on Algorithm Selection for Continuous Black-Box Optimization." Algorithms 14, no. 1 (2021): 19. http://dx.doi.org/10.3390/a14010019.
Pełny tekst źródłaŽlahtič, Bojan, Jernej Završnik, Helena Blažun Vošner, Peter Kokol, David Šuran, and Tadej Završnik. "Agile Machine Learning Model Development Using Data Canyons in Medicine: A Step towards Explainable Artificial Intelligence and Flexible Expert-Based Model Improvement." Applied Sciences 13, no. 14 (2023): 8329. http://dx.doi.org/10.3390/app13148329.
Pełny tekst źródłaHOLZINGER, ANDREAS, MARKUS PLASS, KATHARINA HOLZINGER, GLORIA CERASELA CRIS¸AN, CAMELIA-M. PINTEA, and VASILE PALADE. "A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop." Creative Mathematics and Informatics 28, no. 2 (2019): 121–34. http://dx.doi.org/10.37193/cmi.2019.02.04.
Pełny tekst źródłaSaokani, Ukan, Mohamad Irfan, Dian Sa'adillah Maylawati, Rachmat Jaenal Abidin, Ichsan Taufik, and Riyan Naufal Hay's. "Comparison of the Fisher-Yates Shuffle and the Linear Congruent Algorithm for Randomizing Questions in Nahwu Learning Multimedia." Khazanah Journal of Religion and Technology 1, no. 1 (2023): 10–14. http://dx.doi.org/10.15575/kjrt.v1i1.159.
Pełny tekst źródłaWongvibulsin, Shannon, Katherine C. Wu, and Scott L. Zeger. "Improving Clinical Translation of Machine Learning Approaches Through Clinician-Tailored Visual Displays of Black Box Algorithms: Development and Validation." JMIR Medical Informatics 8, no. 6 (2020): e15791. http://dx.doi.org/10.2196/15791.
Pełny tekst źródłaLu, Li, Yizhong Wu, Qi Zhang, and Ping Qiao. "A Transformation-Based Improved Kriging Method for the Black Box Problem in Reliability-Based Design Optimization." Mathematics 11, no. 1 (2023): 218. http://dx.doi.org/10.3390/math11010218.
Pełny tekst źródłaKerschke, Pascal, and Heike Trautmann. "Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning." Evolutionary Computation 27, no. 1 (2019): 99–127. http://dx.doi.org/10.1162/evco_a_00236.
Pełny tekst źródłaPossatto, André Bina. "Painting the black box white: Interpreting an algorithm-based trading strategy." Brazilian Review of Finance 20, no. 3 (2022): 105–38. http://dx.doi.org/10.12660/rbfin.v20n3.2022.81999.
Pełny tekst źródłaVerma, Pulkit, Shashank Rao Marpally, and Siddharth Srivastava. "Asking the Right Questions: Learning Interpretable Action Models Through Query Answering." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (2021): 12024–33. http://dx.doi.org/10.1609/aaai.v35i13.17428.
Pełny tekst źródłaZhu, Mingzhe, Jie Cheng, Tao Lei, et al. "C-RISE: A Post-Hoc Interpretation Method of Black-Box Models for SAR ATR." Remote Sensing 15, no. 12 (2023): 3103. http://dx.doi.org/10.3390/rs15123103.
Pełny tekst źródłaSudry, Matan, and Erez Karpas. "Learning to Estimate Search Progress Using Sequence of States." Proceedings of the International Conference on Automated Planning and Scheduling 32 (June 13, 2022): 362–70. http://dx.doi.org/10.1609/icaps.v32i1.19821.
Pełny tekst źródłaEnglert, Peter, and Marc Toussaint. "Learning manipulation skills from a single demonstration." International Journal of Robotics Research 37, no. 1 (2017): 137–54. http://dx.doi.org/10.1177/0278364917743795.
Pełny tekst źródłaYuan, Mu, Lan Zhang, and Xiang-Yang Li. "MLink: Linking Black-Box Models for Collaborative Multi-Model Inference." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 9 (2022): 9475–83. http://dx.doi.org/10.1609/aaai.v36i9.21180.
Pełny tekst źródłaWang, Fangwei, Yuanyuan Lu, Changguang Wang, and Qingru Li. "Binary Black-Box Adversarial Attacks with Evolutionary Learning against IoT Malware Detection." Wireless Communications and Mobile Computing 2021 (August 30, 2021): 1–9. http://dx.doi.org/10.1155/2021/8736946.
Pełny tekst źródłaCretu, Andrei. "Learning the Ashby Box: an experiment in second order cybernetic modeling." Kybernetes 49, no. 8 (2019): 2073–90. http://dx.doi.org/10.1108/k-06-2019-0439.
Pełny tekst źródłaLi, Zun, and Michael Wellman. "Structure Learning for Approximate Solution of Many-Player Games." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 02 (2020): 2119–27. http://dx.doi.org/10.1609/aaai.v34i02.5586.
Pełny tekst źródłaShahpouri, Saeid, Armin Norouzi, Christopher Hayduk, Reza Rezaei, Mahdi Shahbakhti, and Charles Robert Koch. "Hybrid Machine Learning Approaches and a Systematic Model Selection Process for Predicting Soot Emissions in Compression Ignition Engines." Energies 14, no. 23 (2021): 7865. http://dx.doi.org/10.3390/en14237865.
Pełny tekst źródłaBizzo, Bernardo C., Shadi Ebrahimian, Mark E. Walters, et al. "Validation pipeline for machine learning algorithm assessment for multiple vendors." PLOS ONE 17, no. 4 (2022): e0267213. http://dx.doi.org/10.1371/journal.pone.0267213.
Pełny tekst źródłaMcTavish, Hayden, Chudi Zhong, Reto Achermann, et al. "Fast Sparse Decision Tree Optimization via Reference Ensembles." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 9 (2022): 9604–13. http://dx.doi.org/10.1609/aaai.v36i9.21194.
Pełny tekst źródłaVan Calster, Ben, Laure Wynants, Dirk Timmerman, Ewout W. Steyerberg, and Gary S. Collins. "Predictive analytics in health care: how can we know it works?" Journal of the American Medical Informatics Association 26, no. 12 (2019): 1651–54. http://dx.doi.org/10.1093/jamia/ocz130.
Pełny tekst źródłaYin, Yiqiao, and Yash Bingi. "Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance." BioMedInformatics 3, no. 2 (2023): 280–98. http://dx.doi.org/10.3390/biomedinformatics3020019.
Pełny tekst źródłaAslam, Nida, Irfan Ullah Khan, Samiha Mirza, et al. "Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI)." Sustainability 14, no. 12 (2022): 7375. http://dx.doi.org/10.3390/su14127375.
Pełny tekst źródłaSoucha, Michal, and Kirill Bogdanov. "Observation Tree Approach: Active Learning Relying on Testing." Computer Journal 63, no. 9 (2019): 1298–310. http://dx.doi.org/10.1093/comjnl/bxz056.
Pełny tekst źródłaPatil, Vishakha, Ganesh Ghalme, Vineet Nair, and Y. Narahari. "Achieving Fairness in the Stochastic Multi-Armed Bandit Problem." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5379–86. http://dx.doi.org/10.1609/aaai.v34i04.5986.
Pełny tekst źródłaLi, Yuancheng, and Yimeng Wang. "Defense Against Adversarial Attacks in Deep Learning." Applied Sciences 9, no. 1 (2018): 76. http://dx.doi.org/10.3390/app9010076.
Pełny tekst źródłaSamaras, Agorastos-Dimitrios, Serafeim Moustakidis, Ioannis D. Apostolopoulos, Elpiniki Papageorgiou, and Nikolaos Papandrianos. "Uncovering the Black Box of Coronary Artery Disease Diagnosis: The Significance of Explainability in Predictive Models." Applied Sciences 13, no. 14 (2023): 8120. http://dx.doi.org/10.3390/app13148120.
Pełny tekst źródłaRutten, Daan, and Debankur Mukherjee. "Capacity Scaling Augmented With Unreliable Machine Learning Predictions." ACM SIGMETRICS Performance Evaluation Review 49, no. 2 (2022): 24–26. http://dx.doi.org/10.1145/3512798.3512808.
Pełny tekst źródłaOtt, Simon, Adriano Barbosa-Silva, and Matthias Samwald. "LinkExplorer: predicting, explaining and exploring links in large biomedical knowledge graphs." Bioinformatics 38, no. 8 (2022): 2371–73. http://dx.doi.org/10.1093/bioinformatics/btac068.
Pełny tekst źródłaWang, Yanan, Xuebing Han, Languang Lu, Yangquan Chen, and Minggao Ouyang. "Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge." Fractal and Fractional 6, no. 11 (2022): 640. http://dx.doi.org/10.3390/fractalfract6110640.
Pełny tekst źródłaKammüller, Florian, and Dimpy Satija. "Explanation of Student Attendance AI Prediction with the Isabelle Infrastructure Framework." Information 14, no. 8 (2023): 453. http://dx.doi.org/10.3390/info14080453.
Pełny tekst źródłaSalih, Dhiadeen Mohammed, Samsul Bahari Mohd Noor, Mohammad Hamiruce Merhaban, and Raja Mohd Kamil. "Wavelet Network: Online Sequential Extreme Learning Machine for Nonlinear Dynamic Systems Identification." Advances in Artificial Intelligence 2015 (September 20, 2015): 1–10. http://dx.doi.org/10.1155/2015/184318.
Pełny tekst źródłaLuong, Ngoc Hoang, Han La Poutré, and Peter A. N. Bosman. "Exploiting Linkage Information and Problem-Specific Knowledge in Evolutionary Distribution Network Expansion Planning." Evolutionary Computation 26, no. 3 (2018): 471–505. http://dx.doi.org/10.1162/evco_a_00209.
Pełny tekst źródłaYiğit, Tuncay, Nilgün Şengöz, Özlem Özmen, Jude Hemanth, and Ali Hakan Işık. "Diagnosis of Paratuberculosis in Histopathological Images Based on Explainable Artificial Intelligence and Deep Learning." Traitement du Signal 39, no. 3 (2022): 863–69. http://dx.doi.org/10.18280/ts.390311.
Pełny tekst źródłaDu, Xiaohu, Jie Yu, Zibo Yi, et al. "A Hybrid Adversarial Attack for Different Application Scenarios." Applied Sciences 10, no. 10 (2020): 3559. http://dx.doi.org/10.3390/app10103559.
Pełny tekst źródłaSaleem, Sobia, Marcus Gallagher, and Ian Wood. "Direct Feature Evaluation in Black-Box Optimization Using Problem Transformations." Evolutionary Computation 27, no. 1 (2019): 75–98. http://dx.doi.org/10.1162/evco_a_00247.
Pełny tekst źródłaBarkalov, Konstantin, Ilya Lebedev, and Evgeny Kozinov. "Acceleration of Global Optimization Algorithm by Detecting Local Extrema Based on Machine Learning." Entropy 23, no. 10 (2021): 1272. http://dx.doi.org/10.3390/e23101272.
Pełny tekst źródła