Gotowa bibliografia na temat „Black-box learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Black-box learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Black-box learning"
Nax, Heinrich H., Maxwell N. Burton-Chellew, Stuart A. West, and H. Peyton Young. "Learning in a black box." Journal of Economic Behavior & Organization 127 (July 2016): 1–15. http://dx.doi.org/10.1016/j.jebo.2016.04.006.
Pełny tekst źródłaBattaile, Bennett. "Black-box electronics and passive learning." Physics Today 67, no. 2 (2014): 11. http://dx.doi.org/10.1063/pt.3.2258.
Pełny tekst źródłaHess, Karl. "Black-box electronics and passive learning." Physics Today 67, no. 2 (2014): 11–12. http://dx.doi.org/10.1063/pt.3.2259.
Pełny tekst źródłaKatrutsa, Alexandr, Talgat Daulbaev, and Ivan Oseledets. "Black-box learning of multigrid parameters." Journal of Computational and Applied Mathematics 368 (April 2020): 112524. http://dx.doi.org/10.1016/j.cam.2019.112524.
Pełny tekst źródłaThe Lancet Respiratory Medicine. "Opening the black box of machine learning." Lancet Respiratory Medicine 6, no. 11 (2018): 801. http://dx.doi.org/10.1016/s2213-2600(18)30425-9.
Pełny tekst źródłaRudnick, Abraham. "The Black Box Myth." International Journal of Extreme Automation and Connectivity in Healthcare 1, no. 1 (2019): 1–3. http://dx.doi.org/10.4018/ijeach.2019010101.
Pełny tekst źródłaPintelas, Emmanuel, Ioannis E. Livieris, and Panagiotis Pintelas. "A Grey-Box Ensemble Model Exploiting Black-Box Accuracy and White-Box Intrinsic Interpretability." Algorithms 13, no. 1 (2020): 17. http://dx.doi.org/10.3390/a13010017.
Pełny tekst źródłaKirsch, Louis, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh, and Yutian Chen. "Introducing Symmetries to Black Box Meta Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (2022): 7202–10. http://dx.doi.org/10.1609/aaai.v36i7.20681.
Pełny tekst źródłaTaub, Simon, and Oleg S. Pianykh. "An alternative to the black box: Strategy learning." PLOS ONE 17, no. 3 (2022): e0264485. http://dx.doi.org/10.1371/journal.pone.0264485.
Pełny tekst źródłaHargreaves, Eleanore. "Assessment for learning? Thinking outside the (black) box." Cambridge Journal of Education 35, no. 2 (2005): 213–24. http://dx.doi.org/10.1080/03057640500146880.
Pełny tekst źródłaRozprawy doktorskie na temat "Black-box learning"
Hussain, Jabbar. "Deep Learning Black Box Problem." Thesis, Uppsala universitet, Institutionen för informatik och media, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393479.
Pełny tekst źródłaKamp, Michael [Verfasser]. "Black-Box Parallelization for Machine Learning / Michael Kamp." Bonn : Universitäts- und Landesbibliothek Bonn, 2019. http://d-nb.info/1200020057/34.
Pełny tekst źródłaVerì, Daniele. "Empirical Model Learning for Constrained Black Box Optimization." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25704/.
Pełny tekst źródłaRowan, Adriaan. "Unravelling black box machine learning methods using biplots." Master's thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31124.
Pełny tekst źródłaMena, Roldán José. "Modelling Uncertainty in Black-box Classification Systems." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670763.
Pełny tekst źródłaSiqueira, Gomes Hugo. "Meta learning for population-based algorithms in black-box optimization." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/68764.
Pełny tekst źródłaSun, Michael(Michael Z. ). "Local approximations of deep learning models for black-box adversarial attacks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121687.
Pełny tekst źródłaBelkhir, Nacim. "Per Instance Algorithm Configuration for Continuous Black Box Optimization." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS455/document.
Pełny tekst źródłaREPETTO, MARCO. "Black-box supervised learning and empirical assessment: new perspectives in credit risk modeling." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402366.
Pełny tekst źródłaJoel, Viklund. "Explaining the output of a black box model and a white box model: an illustrative comparison." Thesis, Uppsala universitet, Filosofiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420889.
Pełny tekst źródłaKsiążki na temat "Black-box learning"
Group, Assessment Reform, and University of Cambridge. Faculty of Education., eds. Assessment for learning: Beyond the black box. Assessment Reform Group, 1999.
Znajdź pełny tekst źródłaPardalos, Panos M., Varvara Rasskazova, and Michael N. Vrahatis, eds. Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66515-9.
Pełny tekst źródła1979-, Nashat Bidjan, and World Bank, eds. The black box of governmental learning: The learning spiral -- a concept to organize learning in governments. World Bank, 2010.
Znajdź pełny tekst źródłaKing's College, London. Department of Education and Professional Studies., ed. Working inside the black box: Assessment for learning in the classroom. nferNelson, 2002.
Znajdź pełny tekst źródła1930-, Black P. J., and King's College, London. Department of Education and Professional Studies., eds. Working inside the black box: Assessment for learning in the classroom. Department of Education and Professional Studies, Kings College, London, 2002.
Znajdź pełny tekst źródłaRussell, David W. The BOXES Methodology: Black Box Dynamic Control. Springer London, 2012.
Znajdź pełny tekst źródłaBlack, Paul. Working inside the black box: An assessment for learning in the classroom. Department of Education and Professional Studies, Kings College, 2002.
Znajdź pełny tekst źródłaJ, Cox Margaret, and King's College London. Department of Education and Professional Studies, eds. Information and communication technology inside the black box: Assessment for learning in the ICT classroom. NferNelson, 2007.
Znajdź pełny tekst źródłaEnglish Inside The Black Box Assessment For Learning In The English Classroom. GL Assessment, 2006.
Znajdź pełny tekst źródłaPardalos, P. M. Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer International Publishing AG, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Black-box learning"
Howard, Sarah, Kate Thompson, and Abelardo Pardo. "Opening the black box." In Learning Analytics in the Classroom. Routledge, 2018. http://dx.doi.org/10.4324/9781351113038-10.
Pełny tekst źródłaDinov, Ivo D. "Black Box Machine Learning Methods." In The Springer Series in Applied Machine Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17483-4_6.
Pełny tekst źródłaSudmann, Andreas. "On Computer creativity. Machine learning and the arts of artificial intelligences." In The Black Box Book. Masaryk University Press, 2022. http://dx.doi.org/10.5817/cz.muni.m280-0225-2022-11.
Pełny tekst źródłaFournier-Viger, Philippe, Mehdi Najjar, André Mayers, and Roger Nkambou. "From Black-Box Learning Objects to Glass-Box Learning Objects." In Intelligent Tutoring Systems. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11774303_26.
Pełny tekst źródłaTV, Vishnu, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, and Gautam Shroff. "Meta-Learning for Black-Box Optimization." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46147-8_22.
Pełny tekst źródłaArchetti, F., A. Candelieri, B. G. Galuzzi, and R. Perego. "Learning Enabled Constrained Black-Box Optimization." In Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66515-9_1.
Pełny tekst źródłaKampakis, Stylianos. "Machine Learning: Inside the Black Box." In Predicting the Unknown. Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9505-2_8.
Pełny tekst źródłaStachowiak-Szymczak, Katarzyna. "Interpreting: Different Approaches Towards the ‘Black Box’." In Second Language Learning and Teaching. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19443-7_1.
Pełny tekst źródłaCai, Jinghui, Boyang Wang, Xiangfeng Wang, and Bo Jin. "Accelerate Black-Box Attack with White-Box Prior Knowledge." In Intelligence Science and Big Data Engineering. Big Data and Machine Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36204-1_33.
Pełny tekst źródłaKuri-Morales, Angel Fernando. "Removing the Black-Box from Machine Learning." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33783-3_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Black-box learning"
Gao, Jingyue, Xiting Wang, Yasha Wang, Yulan Yan, and Xing Xie. "Learning Groupwise Explanations for Black-Box Models." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/330.
Pełny tekst źródłaPapernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami. "Practical Black-Box Attacks against Machine Learning." In ASIA CCS '17: ACM Asia Conference on Computer and Communications Security. ACM, 2017. http://dx.doi.org/10.1145/3052973.3053009.
Pełny tekst źródłaWajahat, Muhammad, Anshul Gandhi, Alexei Karve, and Andrzej Kochut. "Using machine learning for black-box autoscaling." In 2016 Seventh International Green and Sustainable Computing Conference (IGSC). IEEE, 2016. http://dx.doi.org/10.1109/igcc.2016.7892598.
Pełny tekst źródłaAggarwal, Aniya, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha. "Black box fairness testing of machine learning models." In ESEC/FSE '19: 27th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 2019. http://dx.doi.org/10.1145/3338906.3338937.
Pełny tekst źródłaRasouli, Peyman, and Ingrid Chieh Yu. "Explainable Debugger for Black-box Machine Learning Models." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533944.
Pełny tekst źródłaPengcheng, Li, Jinfeng Yi, and Lijun Zhang. "Query-Efficient Black-Box Attack by Active Learning." In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018. http://dx.doi.org/10.1109/icdm.2018.00159.
Pełny tekst źródłaNikoloska, Ivana, and Osvaldo Simeone. "Bayesian Active Meta-Learning for Black-Box Optimization." In 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC). IEEE, 2022. http://dx.doi.org/10.1109/spawc51304.2022.9833993.
Pełny tekst źródłaFu, Junjie, Jian Sun, and Gang Wang. "Boosting Black-Box Adversarial Attacks with Meta Learning." In 2022 41st Chinese Control Conference (CCC). IEEE, 2022. http://dx.doi.org/10.23919/ccc55666.2022.9901576.
Pełny tekst źródłaHuang, Chen, Shuangfei Zhai, Pengsheng Guo, and Josh Susskind. "MetricOpt: Learning to Optimize Black-Box Evaluation Metrics." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021. http://dx.doi.org/10.1109/cvpr46437.2021.00024.
Pełny tekst źródłaHan, Gyojin, Jaehyun Choi, Haeil Lee, and Junmo Kim. "Reinforcement Learning-Based Black-Box Model Inversion Attacks." In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01964.
Pełny tekst źródłaRaporty organizacyjne na temat "Black-box learning"
Zhang, Guannan, Matt Bement, and Hoang Tran. Final Report on Field Work Proposal ERKJ358: Black-Box Training for Scientific Machine Learning Models. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1905375.
Pełny tekst źródłaHauzenberger, Niko, Florian Huber, Gary Koop, and James Mitchell. Bayesian modeling of time-varying parameters using regression trees. Federal Reserve Bank of Cleveland, 2023. http://dx.doi.org/10.26509/frbc-wp-202305.
Pełny tekst źródła