Artykuły w czasopismach na temat „Black-box attack”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Black-box attack”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Jinghui, Dongruo Zhou, Jinfeng Yi i Quanquan Gu. "A Frank-Wolfe Framework for Efficient and Effective Adversarial Attacks". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 3486–94. http://dx.doi.org/10.1609/aaai.v34i04.5753.
Pełny tekst źródłaJiang, Yi, i Dengpan Ye. "Black-Box Adversarial Attacks against Audio Forensics Models". Security and Communication Networks 2022 (17.01.2022): 1–8. http://dx.doi.org/10.1155/2022/6410478.
Pełny tekst źródłaPark, Hosung, Gwonsang Ryu i Daeseon Choi. "Partial Retraining Substitute Model for Query-Limited Black-Box Attacks". Applied Sciences 10, nr 20 (14.10.2020): 7168. http://dx.doi.org/10.3390/app10207168.
Pełny tekst źródłaZhao, Pu, Pin-yu Chen, Siyue Wang i Xue Lin. "Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural Gradient Descent". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 6909–16. http://dx.doi.org/10.1609/aaai.v34i04.6173.
Pełny tekst źródłaDuan, Mingxing, Kenli Li, Jiayan Deng, Bin Xiao i Qi Tian. "A Novel Multi-Sample Generation Method for Adversarial Attacks". ACM Transactions on Multimedia Computing, Communications, and Applications 18, nr 4 (30.11.2022): 1–21. http://dx.doi.org/10.1145/3506852.
Pełny tekst źródłaChen, Zhiyu, Jianyu Ding, Fei Wu, Chi Zhang, Yiming Sun, Jing Sun, Shangdong Liu i Yimu Ji. "An Optimized Black-Box Adversarial Simulator Attack Based on Meta-Learning". Entropy 24, nr 10 (27.09.2022): 1377. http://dx.doi.org/10.3390/e24101377.
Pełny tekst źródłaXiang, Fengtao, Jiahui Xu, Wanpeng Zhang i Weidong Wang. "A Distributed Biased Boundary Attack Method in Black-Box Attack". Applied Sciences 11, nr 21 (8.11.2021): 10479. http://dx.doi.org/10.3390/app112110479.
Pełny tekst źródłaWang, Qiuhua, Hui Yang, Guohua Wu, Kim-Kwang Raymond Choo, Zheng Zhang, Gongxun Miao i Yizhi Ren. "Black-box adversarial attacks on XSS attack detection model". Computers & Security 113 (luty 2022): 102554. http://dx.doi.org/10.1016/j.cose.2021.102554.
Pełny tekst źródłaWang, Lu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh i Yuan Jiang. "Spanning attack: reinforce black-box attacks with unlabeled data". Machine Learning 109, nr 12 (29.10.2020): 2349–68. http://dx.doi.org/10.1007/s10994-020-05916-1.
Pełny tekst źródłaGao, Xianfeng, Yu-an Tan, Hongwei Jiang, Quanxin Zhang i Xiaohui Kuang. "Boosting Targeted Black-Box Attacks via Ensemble Substitute Training and Linear Augmentation". Applied Sciences 9, nr 11 (3.06.2019): 2286. http://dx.doi.org/10.3390/app9112286.
Pełny tekst źródłaDionysiou, Antreas, Vassilis Vassiliades i Elias Athanasopoulos. "Exploring Model Inversion Attacks in the Black-box Setting". Proceedings on Privacy Enhancing Technologies 2023, nr 1 (styczeń 2023): 190–206. http://dx.doi.org/10.56553/popets-2023-0012.
Pełny tekst źródłaKhalel Ibrahem Al-Ubaidy, Mahmood. "BLACK-BOX ATTACK USING NEURO-IDENTIFIER". Cryptologia 28, nr 4 (październik 2004): 358–72. http://dx.doi.org/10.1080/0161-110491892980.
Pełny tekst źródłaTu, Chun-Chen, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh i Shin-Ming Cheng. "AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 742–49. http://dx.doi.org/10.1609/aaai.v33i01.3301742.
Pełny tekst źródłaXu, Jiarong, Yizhou Sun, Xin Jiang, Yanhao Wang, Chunping Wang, Jiangang Lu i Yang Yang. "Blindfolded Attackers Still Threatening: Strict Black-Box Adversarial Attacks on Graphs". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 4 (28.06.2022): 4299–307. http://dx.doi.org/10.1609/aaai.v36i4.20350.
Pełny tekst źródłaYu, Mengran, i Shiliang Sun. "Natural Black-Box Adversarial Examples against Deep Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 8 (28.06.2022): 8936–44. http://dx.doi.org/10.1609/aaai.v36i8.20876.
Pełny tekst źródłaKong, Zixiao, Jingfeng Xue, Zhenyan Liu, Yong Wang i Weijie Han. "MalDBA: Detection for Query-Based Malware Black-Box Adversarial Attacks". Electronics 12, nr 7 (6.04.2023): 1751. http://dx.doi.org/10.3390/electronics12071751.
Pełny tekst źródłaChe, Zhaohui, Ali Borji, Guangtao Zhai, Suiyi Ling, Jing Li i Patrick Le Callet. "A New Ensemble Adversarial Attack Powered by Long-Term Gradient Memories". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 3405–13. http://dx.doi.org/10.1609/aaai.v34i04.5743.
Pełny tekst źródłaWei, Zhipeng, Jingjing Chen, Zuxuan Wu i Yu-Gang Jiang. "Boosting the Transferability of Video Adversarial Examples via Temporal Translation". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 3 (28.06.2022): 2659–67. http://dx.doi.org/10.1609/aaai.v36i3.20168.
Pełny tekst źródłaZhang, Qikun, Yuzhi Zhang, Yanling Shao, Mengqi Liu, Jianyong Li, Junling Yuan i Ruifang Wang. "Boosting Adversarial Attacks with Nadam Optimizer". Electronics 12, nr 6 (20.03.2023): 1464. http://dx.doi.org/10.3390/electronics12061464.
Pełny tekst źródłaKoga, Kazuki, i Kazuhiro Takemoto. "Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification". Algorithms 15, nr 5 (22.04.2022): 144. http://dx.doi.org/10.3390/a15050144.
Pełny tekst źródłaDu, Xiaohu, Jie Yu, Zibo Yi, Shasha Li, Jun Ma, Yusong Tan i Qinbo Wu. "A Hybrid Adversarial Attack for Different Application Scenarios". Applied Sciences 10, nr 10 (21.05.2020): 3559. http://dx.doi.org/10.3390/app10103559.
Pełny tekst źródłaChitic, Raluca, Ali Osman Topal i Franck Leprévost. "Empirical Perturbation Analysis of Two Adversarial Attacks: Black Box versus White Box". Applied Sciences 12, nr 14 (21.07.2022): 7339. http://dx.doi.org/10.3390/app12147339.
Pełny tekst źródłaDing, Daizong, Mi Zhang, Fuli Feng, Yuanmin Huang, Erling Jiang i Min Yang. "Black-Box Adversarial Attack on Time Series Classification". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 7358–68. http://dx.doi.org/10.1609/aaai.v37i6.25896.
Pełny tekst źródłaPark, Sanglee, i Jungmin So. "On the Effectiveness of Adversarial Training in Defending against Adversarial Example Attacks for Image Classification". Applied Sciences 10, nr 22 (14.11.2020): 8079. http://dx.doi.org/10.3390/app10228079.
Pełny tekst źródłaWei, Zhipeng, Jingjing Chen, Xingxing Wei, Linxi Jiang, Tat-Seng Chua, Fengfeng Zhou i Yu-Gang Jiang. "Heuristic Black-Box Adversarial Attacks on Video Recognition Models". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 07 (3.04.2020): 12338–45. http://dx.doi.org/10.1609/aaai.v34i07.6918.
Pełny tekst źródłaFu, Zhongwang, i Xiaohui Cui. "ELAA: An Ensemble-Learning-Based Adversarial Attack Targeting Image-Classification Model". Entropy 25, nr 2 (22.01.2023): 215. http://dx.doi.org/10.3390/e25020215.
Pełny tekst źródłaLapid, Raz, Zvika Haramaty i Moshe Sipper. "An Evolutionary, Gradient-Free, Query-Efficient, Black-Box Algorithm for Generating Adversarial Instances in Deep Convolutional Neural Networks". Algorithms 15, nr 11 (31.10.2022): 407. http://dx.doi.org/10.3390/a15110407.
Pełny tekst źródłaGuan, Yuting, Junjiang He, Tao Li, Hui Zhao i Baoqiang Ma. "SSQLi: A Black-Box Adversarial Attack Method for SQL Injection Based on Reinforcement Learning". Future Internet 15, nr 4 (30.03.2023): 133. http://dx.doi.org/10.3390/fi15040133.
Pełny tekst źródłaChang, Heng, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu i Junzhou Huang. "A Restricted Black-Box Adversarial Framework Towards Attacking Graph Embedding Models". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 3389–96. http://dx.doi.org/10.1609/aaai.v34i04.5741.
Pełny tekst źródłaYang, Bo, Kaiyong Xu, Hengjun Wang i Hengwei Zhang. "Random Transformation of image brightness for adversarial attack". Journal of Intelligent & Fuzzy Systems 42, nr 3 (2.02.2022): 1693–704. http://dx.doi.org/10.3233/jifs-211157.
Pełny tekst źródłaSuryanto, Naufal, Hyoeun Kang, Yongsu Kim, Youngyeo Yun, Harashta Tatimma Larasati i Howon Kim. "A Distributed Black-Box Adversarial Attack Based on Multi-Group Particle Swarm Optimization". Sensors 20, nr 24 (14.12.2020): 7158. http://dx.doi.org/10.3390/s20247158.
Pełny tekst źródłaMaheshwary, Rishabh, Saket Maheshwary i Vikram Pudi. "Generating Natural Language Attacks in a Hard Label Black Box Setting". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 15 (18.05.2021): 13525–33. http://dx.doi.org/10.1609/aaai.v35i15.17595.
Pełny tekst źródłaChen, Yiding, i Xiaojin Zhu. "Optimal Attack against Autoregressive Models by Manipulating the Environment". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 3545–52. http://dx.doi.org/10.1609/aaai.v34i04.5760.
Pełny tekst źródłaCao, Han, Chengxiang Si, Qindong Sun, Yanxiao Liu, Shancang Li i Prosanta Gope. "ABCAttack: A Gradient-Free Optimization Black-Box Attack for Fooling Deep Image Classifiers". Entropy 24, nr 3 (15.03.2022): 412. http://dx.doi.org/10.3390/e24030412.
Pełny tekst źródłaLin, Bin, Jixin Chen, Zhihong Zhang, Yanlin Lai, Xinlong Wu, Lulu Tian i Wangchi Cheng. "An Adversarial Network-based Multi-model Black-box Attack". Intelligent Automation & Soft Computing 29, nr 3 (2021): 641–49. http://dx.doi.org/10.32604/iasc.2021.016818.
Pełny tekst źródłaMun, Hyunjun, Sunggwan Seo, Baehoon Son i Joobeom Yun. "Black-Box Audio Adversarial Attack Using Particle Swarm Optimization". IEEE Access 10 (2022): 23532–44. http://dx.doi.org/10.1109/access.2022.3152526.
Pełny tekst źródłaHaq, Ijaz Ul, Zahid Younas Khan, Arshad Ahmad, Bashir Hayat, Asif Khan, Ye-Eun Lee i Ki-Il Kim. "Evaluating and Enhancing the Robustness of Sustainable Neural Relationship Classifiers Using Query-Efficient Black-Box Adversarial Attacks". Sustainability 13, nr 11 (24.05.2021): 5892. http://dx.doi.org/10.3390/su13115892.
Pełny tekst źródłaCroce, Francesco, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion i Matthias Hein. "Sparse-RS: A Versatile Framework for Query-Efficient Sparse Black-Box Adversarial Attacks". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 6 (28.06.2022): 6437–45. http://dx.doi.org/10.1609/aaai.v36i6.20595.
Pełny tekst źródłaWang, Fangwei, Yuanyuan Lu, Changguang Wang i Qingru Li. "Binary Black-Box Adversarial Attacks with Evolutionary Learning against IoT Malware Detection". Wireless Communications and Mobile Computing 2021 (30.08.2021): 1–9. http://dx.doi.org/10.1155/2021/8736946.
Pełny tekst źródłaFang, Yong, Cheng Huang, Yijia Xu i Yang Li. "RLXSS: Optimizing XSS Detection Model to Defend Against Adversarial Attacks Based on Reinforcement Learning". Future Internet 11, nr 8 (14.08.2019): 177. http://dx.doi.org/10.3390/fi11080177.
Pełny tekst źródłaDu, Meng, Yuxin Sun, Bing Sun, Zilong Wu, Lan Luo, Daping Bi i Mingyang Du. "TAN: A Transferable Adversarial Network for DNN-Based UAV SAR Automatic Target Recognition Models". Drones 7, nr 3 (16.03.2023): 205. http://dx.doi.org/10.3390/drones7030205.
Pełny tekst źródłaWang, Fangwei, Zerou Ma, Xiaohan Zhang, Qingru Li i Changguang Wang. "DDSG-GAN: Generative Adversarial Network with Dual Discriminators and Single Generator for Black-Box Attacks". Mathematics 11, nr 4 (16.02.2023): 1016. http://dx.doi.org/10.3390/math11041016.
Pełny tekst źródłaSauka, Kudzai, Gun-Yoo Shin, Dong-Wook Kim i Myung-Mook Han. "Adversarial Robust and Explainable Network Intrusion Detection Systems Based on Deep Learning". Applied Sciences 12, nr 13 (25.06.2022): 6451. http://dx.doi.org/10.3390/app12136451.
Pełny tekst źródłaIlham Firdaus, Januar Al Amien i Soni Soni. "String Matching untuk Mendeteksi Serangan Sniffing (ARP Spoofing) pada IDS Snort". Jurnal CoSciTech (Computer Science and Information Technology) 1, nr 2 (31.10.2020): 44–49. http://dx.doi.org/10.37859/coscitech.v1i2.2180.
Pełny tekst źródłaZhang, Yue, Seong-Yoon Shin, Xujie Tan i Bin Xiong. "A Self-Adaptive Approximated-Gradient-Simulation Method for Black-Box Adversarial Sample Generation". Applied Sciences 13, nr 3 (18.01.2023): 1298. http://dx.doi.org/10.3390/app13031298.
Pełny tekst źródłaBai, Yang, Yisen Wang, Yuyuan Zeng, Yong Jiang i Shu-Tao Xia. "Query efficient black-box adversarial attack on deep neural networks". Pattern Recognition 133 (styczeń 2023): 109037. http://dx.doi.org/10.1016/j.patcog.2022.109037.
Pełny tekst źródłaLi, Siyuan, Guangji Huang, Xing Xu i Huimin Lu. "Query-based black-box attack against medical image segmentation model". Future Generation Computer Systems 133 (sierpień 2022): 331–37. http://dx.doi.org/10.1016/j.future.2022.03.008.
Pełny tekst źródłaDing, Kangyi, Xiaolei Liu, Weina Niu, Teng Hu, Yanping Wang i Xiaosong Zhang. "A low-query black-box adversarial attack based on transferability". Knowledge-Based Systems 226 (sierpień 2021): 107102. http://dx.doi.org/10.1016/j.knosys.2021.107102.
Pełny tekst źródłaZhu, Jiaqi, Feng Dai, Lingyun Yu, Hongtao Xie, Lidong Wang, Bo Wu i Yongdong Zhang. "Attention‐guided transformation‐invariant attack for black‐box adversarial examples". International Journal of Intelligent Systems 37, nr 5 (11.01.2022): 3142–65. http://dx.doi.org/10.1002/int.22808.
Pełny tekst źródłaWang, Yajie, Yu-an Tan, Wenjiao Zhang, Yuhang Zhao i Xiaohui Kuang. "An adversarial attack on DNN-based black-box object detectors". Journal of Network and Computer Applications 161 (lipiec 2020): 102634. http://dx.doi.org/10.1016/j.jnca.2020.102634.
Pełny tekst źródła