Gotowa bibliografia na temat „Black-box attack”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Black-box attack”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Black-box attack"
Chen, Jinghui, Dongruo Zhou, Jinfeng Yi i Quanquan Gu. "A Frank-Wolfe Framework for Efficient and Effective Adversarial Attacks". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 3486–94. http://dx.doi.org/10.1609/aaai.v34i04.5753.
Pełny tekst źródłaJiang, Yi, i Dengpan Ye. "Black-Box Adversarial Attacks against Audio Forensics Models". Security and Communication Networks 2022 (17.01.2022): 1–8. http://dx.doi.org/10.1155/2022/6410478.
Pełny tekst źródłaPark, Hosung, Gwonsang Ryu i Daeseon Choi. "Partial Retraining Substitute Model for Query-Limited Black-Box Attacks". Applied Sciences 10, nr 20 (14.10.2020): 7168. http://dx.doi.org/10.3390/app10207168.
Pełny tekst źródłaZhao, Pu, Pin-yu Chen, Siyue Wang i Xue Lin. "Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural Gradient Descent". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 6909–16. http://dx.doi.org/10.1609/aaai.v34i04.6173.
Pełny tekst źródłaDuan, Mingxing, Kenli Li, Jiayan Deng, Bin Xiao i Qi Tian. "A Novel Multi-Sample Generation Method for Adversarial Attacks". ACM Transactions on Multimedia Computing, Communications, and Applications 18, nr 4 (30.11.2022): 1–21. http://dx.doi.org/10.1145/3506852.
Pełny tekst źródłaChen, Zhiyu, Jianyu Ding, Fei Wu, Chi Zhang, Yiming Sun, Jing Sun, Shangdong Liu i Yimu Ji. "An Optimized Black-Box Adversarial Simulator Attack Based on Meta-Learning". Entropy 24, nr 10 (27.09.2022): 1377. http://dx.doi.org/10.3390/e24101377.
Pełny tekst źródłaXiang, Fengtao, Jiahui Xu, Wanpeng Zhang i Weidong Wang. "A Distributed Biased Boundary Attack Method in Black-Box Attack". Applied Sciences 11, nr 21 (8.11.2021): 10479. http://dx.doi.org/10.3390/app112110479.
Pełny tekst źródłaWang, Qiuhua, Hui Yang, Guohua Wu, Kim-Kwang Raymond Choo, Zheng Zhang, Gongxun Miao i Yizhi Ren. "Black-box adversarial attacks on XSS attack detection model". Computers & Security 113 (luty 2022): 102554. http://dx.doi.org/10.1016/j.cose.2021.102554.
Pełny tekst źródłaWang, Lu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh i Yuan Jiang. "Spanning attack: reinforce black-box attacks with unlabeled data". Machine Learning 109, nr 12 (29.10.2020): 2349–68. http://dx.doi.org/10.1007/s10994-020-05916-1.
Pełny tekst źródłaGao, Xianfeng, Yu-an Tan, Hongwei Jiang, Quanxin Zhang i Xiaohui Kuang. "Boosting Targeted Black-Box Attacks via Ensemble Substitute Training and Linear Augmentation". Applied Sciences 9, nr 11 (3.06.2019): 2286. http://dx.doi.org/10.3390/app9112286.
Pełny tekst źródłaRozprawy doktorskie na temat "Black-box attack"
Sun, Michael(Michael Z. ). "Local approximations of deep learning models for black-box adversarial attacks". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121687.
Pełny tekst źródłaThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 45-47).
We study the problem of generating adversarial examples for image classifiers in the black-box setting (when the model is available only as an oracle). We unify two seemingly orthogonal and concurrent lines of work in black-box adversarial generation: query-based attacks and substitute models. In particular, we reinterpret adversarial transferability as a strong gradient prior. Based on this unification, we develop a method for integrating model-based priors into the generation of black-box attacks. The resulting algorithms significantly improve upon the current state-of-the-art in black-box adversarial attacks across a wide range of threat models.
by Michael Sun.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Auernhammer, Katja [Verfasser], Felix [Akademischer Betreuer] Freiling, Kolagari Ramin [Akademischer Betreuer] Tavakoli, Felix [Gutachter] Freiling, Kolagari Ramin [Gutachter] Tavakoli i Dominique [Gutachter] Schröder. "Mask-based Black-box Attacks on Safety-Critical Systems that Use Machine Learning / Katja Auernhammer ; Gutachter: Felix Freiling, Ramin Tavakoli Kolagari, Dominique Schröder ; Felix Freiling, Ramin Tavakoli Kolagari". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021. http://d-nb.info/1238358292/34.
Pełny tekst źródłaCzęści książek na temat "Black-box attack"
Cai, Jinghui, Boyang Wang, Xiangfeng Wang i Bo Jin. "Accelerate Black-Box Attack with White-Box Prior Knowledge". W Intelligence Science and Big Data Engineering. Big Data and Machine Learning, 394–405. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36204-1_33.
Pełny tekst źródłaBai, Yang, Yuyuan Zeng, Yong Jiang, Yisen Wang, Shu-Tao Xia i Weiwei Guo. "Improving Query Efficiency of Black-Box Adversarial Attack". W Computer Vision – ECCV 2020, 101–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58595-2_7.
Pełny tekst źródłaAndriushchenko, Maksym, Francesco Croce, Nicolas Flammarion i Matthias Hein. "Square Attack: A Query-Efficient Black-Box Adversarial Attack via Random Search". W Computer Vision – ECCV 2020, 484–501. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58592-1_29.
Pełny tekst źródłaFeng, Xinjie, Hongxun Yao, Wenbin Che i Shengping Zhang. "An Effective Way to Boost Black-Box Adversarial Attack". W MultiMedia Modeling, 393–404. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37731-1_32.
Pełny tekst źródłaHuan, Zhaoxin, Yulong Wang, Xiaolu Zhang, Lin Shang, Chilin Fu i Jun Zhou. "Data-Free Adversarial Perturbations for Practical Black-Box Attack". W Advances in Knowledge Discovery and Data Mining, 127–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47436-2_10.
Pełny tekst źródłaWang, Tong, Yuan Yao, Feng Xu, Shengwei An, Hanghang Tong i Ting Wang. "An Invisible Black-Box Backdoor Attack Through Frequency Domain". W Lecture Notes in Computer Science, 396–413. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19778-9_23.
Pełny tekst źródłaPooja, S., i Gilad Gressel. "Towards a General Black-Box Attack on Tabular Datasets". W Lecture Notes in Networks and Systems, 557–67. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1203-2_47.
Pełny tekst źródłaBayram, Samet, i Kenneth Barner. "A Black-Box Attack on Optical Character Recognition Systems". W Computer Vision and Machine Intelligence, 221–31. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7867-8_18.
Pełny tekst źródłaYang, Chenglin, Adam Kortylewski, Cihang Xie, Yinzhi Cao i Alan Yuille. "PatchAttack: A Black-Box Texture-Based Attack with Reinforcement Learning". W Computer Vision – ECCV 2020, 681–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58574-7_41.
Pełny tekst źródłaYuito, Makoto, Kenta Suzuki i Kazuki Yoneyama. "Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises". W Information and Communications Security, 303–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15777-6_17.
Pełny tekst źródłaStreszczenia konferencji na temat "Black-box attack"
Chen, Pengpeng, Yongqiang Yang, Dingqi Yang, Hailong Sun, Zhijun Chen i Peng Lin. "Black-Box Data Poisoning Attacks on Crowdsourcing". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/332.
Pełny tekst źródłaZhao, Mengchen, Bo An, Wei Gao i Teng Zhang. "Efficient Label Contamination Attacks Against Black-Box Learning Models". W Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/551.
Pełny tekst źródłaJi, Yimu, Jianyu Ding, Zhiyu Chen, Fei Wu, Chi Zhang, Yiming Sun, Jing Sun i Shangdong Liu. "Simulator Attack+ for Black-Box Adversarial Attack". W 2022 IEEE International Conference on Image Processing (ICIP). IEEE, 2022. http://dx.doi.org/10.1109/icip46576.2022.9897950.
Pełny tekst źródłaZhang, Yihe, Xu Yuan, Jin Li, Jiadong Lou, Li Chen i Nian-Feng Tzeng. "Reverse Attack: Black-box Attacks on Collaborative Recommendation". W CCS '21: 2021 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3460120.3484805.
Pełny tekst źródłaWang, Run, Felix Juefei-Xu, Qing Guo, Yihao Huang, Xiaofei Xie, Lei Ma i Yang Liu. "Amora: Black-box Adversarial Morphing Attack". W MM '20: The 28th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3394171.3413544.
Pełny tekst źródłaXiao, Chaowei, Bo Li, Jun-yan Zhu, Warren He, Mingyan Liu i Dawn Song. "Generating Adversarial Examples with Adversarial Networks". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/543.
Pełny tekst źródłaLi, Jie, Rongrong Ji, Hong Liu, Jianzhuang Liu, Bineng Zhong, Cheng Deng i Qi Tian. "Projection & Probability-Driven Black-Box Attack". W 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.00044.
Pełny tekst źródłaWilliams, Phoenix, Ke Li i Geyong Min. "Black-box adversarial attack via overlapped shapes". W GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3520304.3528934.
Pełny tekst źródłaMoraffah, Raha, i Huan Liu. "Query-Efficient Target-Agnostic Black-Box Attack". W 2022 IEEE International Conference on Data Mining (ICDM). IEEE, 2022. http://dx.doi.org/10.1109/icdm54844.2022.00047.
Pełny tekst źródłaMesbah, Abdelhak, Mohamed Mezghiche i Jean-Louis Lanet. "Persistent fault injection attack from white-box to black-box". W 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B). IEEE, 2017. http://dx.doi.org/10.1109/icee-b.2017.8192164.
Pełny tekst źródłaRaporty organizacyjne na temat "Black-box attack"
Ghosh, Anup, Steve Noel i Sushil Jajodia. Mapping Attack Paths in Black-Box Networks Through Passive Vulnerability Inference. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2011. http://dx.doi.org/10.21236/ada563714.
Pełny tekst źródła