Gotowa bibliografia na temat „Bitterness (taste)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Bitterness (taste)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Bitterness (taste)"
Mabuchi, Ryota, Ayaka Ishimaru, Mao Tanaka, Osamu Kawaguchi i Shota Tanimoto. "Metabolic Profiling of Fish Meat by GC-MS Analysis, and Correlations with Taste Attributes Obtained Using an Electronic Tongue". Metabolites 9, nr 1 (21.12.2018): 1. http://dx.doi.org/10.3390/metabo9010001.
Pełny tekst źródłaDelompré, Thomas, Christine Belloir, Christophe Martin, Christian Salles i Loïc Briand. "Detection of Bitterness in Vitamins Is Mediated by the Activation of Bitter Taste Receptors". Nutrients 14, nr 19 (5.10.2022): 4141. http://dx.doi.org/10.3390/nu14194141.
Pełny tekst źródłaLush, Ian E., i Gail Holland. "The genetics of tasting in mice: V. Glycine and cycloheximide". Genetical Research 52, nr 3 (grudzień 1988): 207–12. http://dx.doi.org/10.1017/s0016672300027671.
Pełny tekst źródłaErvina, Ervina, Ingunn Berget i Valérie L. Almli. "Investigating the Relationships between Basic Tastes Sensitivities, Fattiness Sensitivity, and Food Liking in 11-Year-Old Children". Foods 9, nr 9 (18.09.2020): 1315. http://dx.doi.org/10.3390/foods9091315.
Pełny tekst źródłaJioe, Irvan Prawira Julius, Huey-Ling Lin i Ching-Chang Shiesh. "The Investigation of Phenylalanine, Glucosinolate, Benzylisothiocyanate (BITC) and Cyanogenic Glucoside of Papaya Fruits (Carica papaya L. cv. ‘Tainung No. 2’) under Different Development Stages between Seasons and Their Correlation with Bitter Taste". Horticulturae 8, nr 3 (24.02.2022): 198. http://dx.doi.org/10.3390/horticulturae8030198.
Pełny tekst źródłaLim, Ler Sheang, Xian Hui Tang, Wai Yew Yang, Shu Hwa Ong, Nenad Naumovski i Rati Jani. "Taste Sensitivity and Taste Preference among Malay Children Aged 7 to 12 Years in Kuala Lumpur—A Pilot Study". Pediatric Reports 13, nr 2 (18.05.2021): 245–56. http://dx.doi.org/10.3390/pediatric13020034.
Pełny tekst źródłaLi, Li-Jun, Wan-Seng Tan, Wen-Jing Li, Yan-Bing Zhu, Yi-Sheng Cheng i Hui Ni. "Citrus Taste Modification Potentials by Genetic Engineering". International Journal of Molecular Sciences 20, nr 24 (8.12.2019): 6194. http://dx.doi.org/10.3390/ijms20246194.
Pełny tekst źródłaCometto-Muñiz, J. Enrique, María Rosa García-Medina, Amalia M. Calviño i Gustavo Noriega. "Interactions between Co2 Oral Pungency and Taste". Perception 16, nr 5 (październik 1987): 629–40. http://dx.doi.org/10.1068/p160629.
Pełny tekst źródłaSoares, Susana, Elsa Brandão, Carlos Guerreiro, Sónia Soares, Nuno Mateus i Victor de Freitas. "Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste". Molecules 25, nr 11 (2.06.2020): 2590. http://dx.doi.org/10.3390/molecules25112590.
Pełny tekst źródłaAn, Uijeong, Xiaofen Du i Wanyi Wang. "Consumer Expectation of Flavored Water Function, Sensory Quality, and Sugar Reduction, and the Impact of Demographic Variables and Woman Consumer Segment". Foods 11, nr 10 (16.05.2022): 1434. http://dx.doi.org/10.3390/foods11101434.
Pełny tekst źródłaRozprawy doktorskie na temat "Bitterness (taste)"
Clapp, Tod R. "Characterization of IP₃ receptors in bitter taste transduction". Access citation, abstract and download form; downloadable file 3.78 Mb, 2004. http://wwwlib.umi.com/dissertations/fullcit/3131664.
Pełny tekst źródłaCho, Myong J. "Characterization of bitter peptides from soy protein hydrolysates /". free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9998475.
Pełny tekst źródłaFayoux, Stéphane C. "Interactions between plasticised PVC films and citrus juice components". Thesis, View thesis, 2004. http://handle.uws.edu.au:8081/1959.7/35863.
Pełny tekst źródłaKrieling, Shannon Janine. "An investigation into lactic acid bacteria as a possible cause of bitterness in wine". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53271.
Pełny tekst źródłaENGLISH ABSTRACT: Spoilage, be it due to microbial actions, chemical reactions or both, poses a serious threat to the food and beverage industries. Not only can spoilage lead to great economic losses, but it can also cause industries to lose their competitive edge in the economic and consumer market. Considering all the modern technologies and the range of preservation techniques that are available, it is surprising that spoilage is still an economic problem. Wine spoilage due to unpalatable bitterness, and the role of lactic acid bacteria (LAB) in causing this bitterness, have received much attention over the years, but no definite understanding has yet emerged. The first objective of this study was to isolate, enumerate and identify the LAB from three red grape varieties, viz. Pinotage, Merlot and Cabernet Sauvignon. The LAB populations on the grapes of all three varieties ranged from 102 to 104 cfu/ml during the 2001 and 2002 harvest seasons. The Cabernet Sauvignon grapes had slightly higher numbers than the Pinotage and Merlot. The LAB population in the Cabernet Sauvignon, Pinotage and Merlot wines after completion of the alcoholic fermentation ranged from 102 to 105 cfu/ml, while during 2002 the numbers in wine undergoing malolactic fermentation (MLF) ranged from 104 to 108 cfu/ml. The isolated LAB were divided into the three metabolic groups, with 59% belonging to the facultatively heterofermentative group, 26% to the obligately heterofermentative group and 15% to the obligately homofermentative group. The isolates were identified by means of species-specific primers as Leuconostoc mesenteroides (4), Oenococcus oeni (28), Lactobacillus brevis (15), Lb. hilgardii (15), Lb. plantarum (98), Lb. pentosus (12), Lb. paraplantarum (3), Lb. paracasei (28), Pediococcus acidilactici (2) and Pediococcus spp. (35). The most predominant species isolated was Lb. plantarum, followed by Pediococcus spp. The results suggest that Pinotage carries a more diverse LAB population in comparison to Merlot and Cabernet Sauvignon. The second objective of this study was to determine the presence of the glycerol dehydratase gene in the LAB strains by using the G01 and G02 primers. Twenty-six strains tested positive, namely Lb. plantarum (15), Lb. pentosus (1), Lb. hilgardii (5), Lb. paracasei (2), Lb. brevis (2) and a Pediococcus spp. (1). Interestingly, 62% of these strains were isolated from Pinotage. The strains all had the ability to degrade glycerol by more than 90%, and no significant differences were observed between the species. The GO-possessing strains exhibited varying degrees of inhibition towards Gram-positive and Gram-negative bacteria, and the results suggest that this inhibition activity may be similar to that of reuterin, which is produced by Lb. reuteri. This study can form the foundation for unravelling the causes of bitterness in red wines. Combining the results of this study with analytical, sensory and molecular data may very well provide the industry with valuable tools with which to combat the occurrence of bitterness.
AFRIKAANSE OPSOMMING: Bederf as gevolg van mikrobiese aksies, chemiese reaksies of beide, hou 'n groot bedreiging vir die voedsel- en drankbedrywe in. Nie net kan bederf lei tot groot ekonomiese verliese nie, maar dit kan ook veroorsaak dat bedrywe hul kompeterende voordeel in die ekonomiese en verbruikersmarkte verloor. As die moderne tegnologie en die reeks preserveringstegnieke wat beskikbaar is, in ag geneem word, is dit verbasend dat bederf steeds 'n ekonomiese probleem is. Wynbederf as gevolg van oormatige bitterheid en die rol van melksuurbakterieë (MSB) in die ontwikkeling van hierdie bitterheid het oor die jare heen baie aandag geniet, maar geen definitiewe verklaring is nog daarvoor gevind nie. Die eerste doelwit van hierdie studie was om MSB vanaf drie rooidruifvariëteite, nl. Pinotage, Merlot en Cabernet Sauvignon, te isoleer, te kwantifiseer en te identifiseer. Die MSB-populasies op die druiwe van al drie variëteite het gedurende die 2001- en 2002-parsseisoene tussen 102 en 104 kvu/ml gevarieer. Die Cabernet Sauvignon-druiwe het effens hoër getalle as die Pinotage- en Merlot-druiwe gehad. Die MSB-populasies in die Cabernet Sauvignon-, Pinotage- en Merlot-wyne aan die einde van die alkoholiese fermentasie het tussen 102 en 1055 kvu/ml gevarieer. Gedurende 2002 het die MSB-getalle in die wyne waarin appelmelksuurgisting (AMG) aan die gang was tussen 104 en 108 kvu/ml gevarieer. Die geïsoleerde MSB was onderverdeel in die drie metaboliese groepe, met 59% wat behoort aan die fakultatiewe, heterofermentatiewe groep, 26% aan die obligate, heterofermentatiewe groep en 15% aan die obligate, homofermentatiewe groep. Die isolate is geïdentifiseer as Leuconostoc mesenteroides (4), Oenococcus oeni (28), Lactobacillus brevis (15), Lactobacillus hi/gardii (15, Lactobacillus p/antarum (98), Lactobacillus pentosus (12), Lactobacillus parap/antarum (3), Lactobacillus paracasei (28), Pediococcus acidi/actici (2) en Pediococcus spp. (35) deur middel van spes iespesifieke inleiers. Die mees algemeen geïsoleerde spesies was Lb. p/antarum, gevolg deur Pediococcus spp. Die resultate impliseer dat Pinotage 'n meer uiteenlopende MSB-populasie in vergelyking met Merlot en Cabernet Sauvignon dra. Die tweede doelwit van hierdie studie was om die teenwoordigheid van die gliseroldehidratase-geen in die MSB-isolate deur middel van die GD1- en GD2- inleiers te bepaal. Ses-en-twintig isolate was positief, nl. Lb. p/antarum (15), Lb. pentosus (1), Lb. hi/gard;; (5), Lb. paracasei (2), Lb. brevis (2) en 'n Pediococcus spp. (1). 'n Interessante resultaat was dat 62% van hierdie isolate vanaf Pinotage geïsoleer is. Die isolate was almal in staat om meer as 90% van die gliserol te gebruik en geen noemenswaardige verskille is tussen die isolate waargeneem nie. Die GD-bevattende isolate het verskillende grade van inhibisie teenoor Grampositiewe en Gram-negatiewe bakterieë getoon, en die resultate impliseer dat hierdie inhiberende aktiwiteit dieselfde is as dié van reuterin wat deur Lb. reuteri geproduseer word. Hierdie studie kan dus die basis vorm vir die ontrafeling van die oorsake van bitterheid in rooiwyne. Deur die resultate van hierdie studie met analitiese, sensoriese en molekulêre data te kombineer, kan die wynbedryf voorsien word van waardevolle metodes om die voorkoms van bitterheid mee te bekamp.
Fayoux, Stéphane C. "Interactions between plasticised PVC films and citrus juice components". View thesis, 2004. http://handle.uws.edu.au:8081/1959.7/35863.
Pełny tekst źródłaA thesis presented to the University of Western Sydney, Centre for Advanced Food Research, in fulfilment of the requirements for the degree of Doctor of Philosophy in Advanced Food Science (& Food Packaging Science). Includes bibliography.
Fletcher, Joshua Nehemiah. "Isolation, Identification, and Biological Evaluation of Potential Flavor Modulatory Flavonoids from Eriodictyon californicum". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322496872.
Pełny tekst źródłaWinstel, Delphine. "Recherches sur les composés du bois de chêne modulant la saveur des vins et des eaux-de-vie". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0409.
Pełny tekst źródłaDuring barrel aging, wines and spirits undergo organoleptic changes caused by the release of aroma and taste molecules. While the key aromatic compounds released from oak wood have been identified, the bitter and sweet molecular determinants remain largely unknown. The first objective of this work was to bring new insights on the families of molecules already identified in oak wood: lignans and coumarins. First, a significant impact of (±)-lyoniresinol on spirits bitterness has been demonstrated. Then, sensory analysis showed the contribution of six coumarins to bitter taste of wines and spirits by synergistic effect. Fraxetin was identified for the first time in all three matrices of the study. In the second part of this work, the contribution of oak wood toasting to wine sweet taste has been studied, which allowed to confirm and to interpret empirical observations. Indeed, the aim of this study was to isolate new taste-active compounds, according to two different methods. For the first one, a fractionation protocol of oak wood extracts has been established. Separation techniques coupled with gustatometry allowed the purification of eleven taste-active compounds. Their identification has been carried out by HRMS and NMR. For the second method, a targeted approach has been used following a metabolomic screening by HRMS on several eaux-de-vie of Cognac. Two new taste-active molecules have been purified. These new markers have been quantified in several oak wood extracts, wines and spirits. The influence of oenological parameters on its content has been studied
Dsamou, Micheline. "Protéome salivaire et sensibilité à l'amertume chez l'Homme". Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00935220.
Pełny tekst źródła"Individual Differences in Taste Perception and Bitterness Masking". Master's thesis, 2012. http://hdl.handle.net/2286/R.I.15782.
Pełny tekst źródłaDissertation/Thesis
M.A. Psychology 2012
Jioe, Irvan Prawira Julius, i 尤澤森. "Factors Affecting the Bitterness Taste in Papaya Fruits and Papaya Milk". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/54390809455967191890.
Pełny tekst źródła國立中興大學
園藝學系所
104
‘Tai-Nong No. 2’Carica papaya L.is one of the important papaya cultivars in Taiwan which occupies around 90% of the total planted area. In spite of being eaten as fresh fruit or juice; immature fruits, leaves and flowers can also be eaten as vegetables. Furthermore, papaya latex can also be used as tenderizer and additive for beer brewing. However, ‘Tai-Nong No. 2’ papaya may taste bitter during the cool seasons or when mixed with milk. Therefore, the purpose of this study is to investigate the bitter taste in papaya fruit in different harvest seasons, maturity, development stage, lines/cultivars and papaya milk. The results showed that fruits harvested at pre-climacteric fruits and stored under low temperature are unable to develop the bitter taste. However, when the fruits were ripened at low temperature (pre- to climacteric / transition stage) showed were not significantly different from those ripened at room temperature. Furthermore, the investigation of mature green and 25% yellowed skin fruits ripened at low or room temperature showed that mature green fruits had significantly stronger bitter taste than 25% yellowed skin fruits. Moreover, ripe mature fruit can be classified into light yellow and yellow-fleshed color while 25% yellowed skin perform red-fleshed color. In addition, the bitter taste of light yellow-fleshed fruit is stronger than yellow and red-fleshed fruits. Moreover, cool seasons had more light yellow-fleshed fruit than warm seasons. These results suggested that improper harvest maturity during cool season caused bitter taste in ‘Tai-Nong No. 2’ papaya fruits. The investigation of bitter taste in fruits at different developmental stages during warm and cool seasons indicated that young fruits had stronger bitter taste in both seasons. Furthermore, the comparison between warm and cool seasons found that cool season fruits are bitter than warm season fruits. The analyses of bitter taste related substances in fruits demonstrated that cyanogenic glucoside is negative correlation with bitter taste. In contrast, phenylalanine and glucosinolate showed positive correlations with bitter intensity. In addition, the phenylalanine and glucosinolate content in cool seasons were higher than warm seasons. However, the investigation of BITC content showed an adverse tendency with phenylalanine and glucosinolate content. Our results indicated that myrosinase activities are not significantly different between warm and cool seasons. It remains unclear whether cool season affect the glucosinolate biosynthesis or only inhibit myrosinase activities causing glucosinolate accumulation. Results from papaya milk showed that the source of the bitter taste in papaya milk is due to the degradation of milk protein by proteolytic enzymes in papaya fruits. In addition, the free amino acid, total soluble protein, tyrosine and phenylalanine contents showed positive correlation with bitter intensity. However, investigation in different papaya lines/cultivars showed that bitter intensity is more closely related to tyrosine or phenylalanine content than total soluble protein and free amino acid content. In conclusion, the bitterness of ripe papaya fruits happened due to the improper harvest maturity. Although, glucosinolate is one of the bitter substances in young fruits, bitterness in ripe fruits might be caused by other bitter compounds beside glucosinolate. In addition, papaya milk bitterness showed positive correlation with phenylalanine and tyrosine. However, the role of bitter taste in papaya fruits might only play as bitter compound precursors.
Książki na temat "Bitterness (taste)"
Sales, Edgar Samuel Morales. El sabor agrio en la cultura mazahua. Toluca: Instituto Mexiquense de Cultura, 2000.
Znajdź pełny tekst źródłaA taste of bitterness: The political economy of tea plantations in Sri Lanka. Amsterdam: Free University Press, 1986.
Znajdź pełny tekst źródłaJournée d'études L'amer dans la littérature (2007 Pau, France). De l'amer: Actes de la Journée d'études L'amer dans la littérature (Pau, 26 janvier 2007). Biarritz: Atlantica, 2008.
Znajdź pełny tekst źródłaJournée d'études L'amer dans la littérature (2007 Pau, France). De l'amer: Actes de la Journée d'études L'amer dans la littérature (Pau, 26 janvier 2007). Biarritz: Atlantica, 2008.
Znajdź pełny tekst źródłaJournée, d'études L'amer dans la littérature (2007 Pau France). De l'amer: Actes de la Journée d'études L'amer dans la littérature (Pau, 26 janvier 2007). Biarritz: Atlantica, 2008.
Znajdź pełny tekst źródłaHelene, Pensacola. The Sweet Taste of Bitterness. AuthorHouse, 2005.
Znajdź pełny tekst źródłaL, Rouseff Russell, red. Bitterness in foods and beverages. Amsterdam: Elsevier, 1990.
Znajdź pełny tekst źródłaphotographer, Anderson Ed (photographer), red. Amaro: The spirited world of bittersweet, herbal liqueurs with cocktails, recipes and formulas. Ten Speed Press, 2016.
Znajdź pełny tekst źródłaMichael, Roy Glenn, red. Modifying bitterness: Mechanism, ingredients, and applications. Lancaster, Pa: Technomic Publishing Company, 1997.
Znajdź pełny tekst źródłaMcLagan, Jennifer. Bitter: A Taste of the World's Most Dangerous Flavour. Quarto Publishing Group UK, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Bitterness (taste)"
Upadhyaya, Jasbir, Nisha Singh, Raj Bhullar i Prashen Chelikani. "Biochemistry of Human Bitter Taste Receptors". W Bitterness, 1–20. Hoboken, New Jersey: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118590263.ch1.
Pełny tekst źródłaMichikawa, Kyoko, i Shoji Konosu. "Sensory Identification of Effective Components for Masking Bitterness of Arginine in Synthetic Extract of Scallop". W Olfaction and Taste XI, 278. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68355-1_106.
Pełny tekst źródła"Good Taste is Required". W The Chemical Story of Olive Oil: From Grove to Table, 196–230. The Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781782628569-00196.
Pełny tekst źródłaJames, Henry. "Chapter XVIII". W The Spoils of Poynton. Oxford University Press, 2008. http://dx.doi.org/10.1093/owc/9780199552481.003.0018.
Pełny tekst źródłaCubero-Castillo, Elba, i Ann Noble. "Relationship of 6-n-Propylthiouracil Status to Bitterness Sensitivity". W Genetic Variation in Taste Sensitivity. CRC Press, 2004. http://dx.doi.org/10.1201/9780203023433.ch5.
Pełny tekst źródła"Relationship of 6-n-Propylthiouracil Status to Bitterness Sensitivity". W Genetic Variation in Taste Sensitivity, 104–15. CRC Press, 2004. http://dx.doi.org/10.1201/9780203023433-10.
Pełny tekst źródła"Flavours". W Food: The Chemistry of its Components, 300–355. Wyd. 6. The Royal Society of Chemistry, 2015. http://dx.doi.org/10.1039/bk9781849738804-00300.
Pełny tekst źródłaDriessen, Miriam. "Preserving Purity". W Tales of Hope, Tastes of Bitterness, 45–64. Hong Kong University Press, 2019. http://dx.doi.org/10.5790/hongkong/9789888528042.003.0003.
Pełny tekst źródłaDriessen, Miriam. "Introduction". W Tales of Hope, Tastes of Bitterness, 1–27. Hong Kong University Press, 2019. http://dx.doi.org/10.5790/hongkong/9789888528042.003.0001.
Pełny tekst źródłaTerashita, Keijiro, i Osamu Wakabayashi. "Quality Engineering Approach to Bitterness-Masked Formulations and Establishment of Bitterness Masking Evaluation System Using Taste-Sensing System". W Biochemical Sensors, 231–49. Pan Stanford, 2013. http://dx.doi.org/10.1201/b15650-18.
Pełny tekst źródłaStreszczenia konferencji na temat "Bitterness (taste)"
Norman, Seth I., i Dan A. Kimball. "A Commercial Citrus Debittering System". W ASME 1990 Citrus Engineering Conference. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/cec1990-3601.
Pełny tekst źródłaRaporty organizacyjne na temat "Bitterness (taste)"
Naim, Michael, Andrew Spielman, Shlomo Nir i Ann Noble. Bitter Taste Transduction: Cellular Pathways, Inhibition and Implications for Human Acceptance of Agricultural Food Products. United States Department of Agriculture, luty 2000. http://dx.doi.org/10.32747/2000.7695839.bard.
Pełny tekst źródła