Artykuły w czasopismach na temat „Biomolecular Visualization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Biomolecular Visualization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
DOI, Junta. "Biomolecular Visualization". Journal of the Visualization Society of Japan 10, nr 39 (1990): 222–27. http://dx.doi.org/10.3154/jvs.10.222.
Pełny tekst źródłaDuncan, Bruce S., Tom J. Macke i Arthur J. Olson. "Biomolecular visualization using AVS". Journal of Molecular Graphics 13, nr 5 (październik 1995): 271–82. http://dx.doi.org/10.1016/0263-7855(95)00067-4.
Pełny tekst źródłaSong, Cheng Long, Chen Zou, Wen Ke Wang i Si Kun Li. "An Integrated Framework for Biological Data Visualization". Advanced Materials Research 846-847 (listopad 2013): 1145–48. http://dx.doi.org/10.4028/www.scientific.net/amr.846-847.1145.
Pełny tekst źródłaPerlasca, Paolo, Marco Frasca, Cheick Tidiane Ba, Jessica Gliozzo, Marco Notaro, Mario Pennacchioni, Giorgio Valentini i Marco Mesiti. "Multi-resolution visualization and analysis of biomolecular networks through hierarchical community detection and web-based graphical tools". PLOS ONE 15, nr 12 (22.12.2020): e0244241. http://dx.doi.org/10.1371/journal.pone.0244241.
Pełny tekst źródłaXie, Jiang, Zhonghua Zhou, Kai Lu, Luonan Chen i Wu Zhang. "Visualization of biomolecular networks' comparison on cytoscape". Tsinghua Science and Technology 18, nr 5 (październik 2013): 515——521. http://dx.doi.org/10.1109/tst.2013.6616524.
Pełny tekst źródłaHe, Weiwei, Yen-Lin Chen, Serdal Kirmizialtin i Lois Pollack. "Visualization of biomolecular structures by WAXS and MD". Acta Crystallographica Section A Foundations and Advances 77, a1 (30.07.2021): a124. http://dx.doi.org/10.1107/s0108767321098755.
Pełny tekst źródłaYi Ronggui, Xie Jiang, Zhang Huiran, Zhang Wu i Shigeo Kawata. "BNVC: A Web-Oriented Biomolecular Network Visualization Platform". Journal of Next Generation Information Technology 4, nr 3 (31.05.2013): 151–59. http://dx.doi.org/10.4156/jnit.vol4.issue3.18.
Pełny tekst źródłaKozlíková, B., M. Krone, M. Falk, N. Lindow, M. Baaden, D. Baum, I. Viola, J. Parulek i H. C. Hege. "Visualization of Biomolecular Structures: State of the Art Revisited". Computer Graphics Forum 36, nr 8 (18.11.2016): 178–204. http://dx.doi.org/10.1111/cgf.13072.
Pełny tekst źródłaAndo, Toshio, Takayuki Uchihashi, Noriyuki Kodera, Daisuke Yamamoto, Atsushi Miyagi, Masaaki Taniguchi i Hayato Yamashita. "High-speed AFM and nano-visualization of biomolecular processes". Pflügers Archiv - European Journal of Physiology 456, nr 1 (20.12.2007): 211–25. http://dx.doi.org/10.1007/s00424-007-0406-0.
Pełny tekst źródłaYou, Qian, Shiaofen Fang i Jake Yue Chen. "Gene Terrain: Visual Exploration of Differential Gene Expression Profiles Organized in Native Biomolecular Interaction Networks". Information Visualization 9, nr 1 (6.03.2008): 1–12. http://dx.doi.org/10.1057/ivs.2008.3.
Pełny tekst źródłaZhang, Hui Ran, Xiao Long Shen, Jiang Xie i Dong Bo Dai. "A Web-Based Tool for Visualization of Biomolecular Network Comparison". Applied Mechanics and Materials 556-562 (maj 2014): 5482–87. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.5482.
Pełny tekst źródłaLyubchenko, Yuri L. "Direct AFM visualization of the nanoscale dynamics of biomolecular complexes". Journal of Physics D: Applied Physics 51, nr 40 (20.08.2018): 403001. http://dx.doi.org/10.1088/1361-6463/aad898.
Pełny tekst źródłaHaiying Wang, F. Azuaje i N. Black. "Improving biomolecular pattern discovery and visualization with hybrid self-adaptive networks". IEEE Transactions on Nanobioscience 1, nr 4 (grudzień 2002): 146–66. http://dx.doi.org/10.1109/tnb.2003.809465.
Pełny tekst źródłaWang, Quan, i W. E. Moerner. "Single-molecule motions enable direct visualization of biomolecular interactions in solution". Nature Methods 11, nr 5 (9.03.2014): 555–58. http://dx.doi.org/10.1038/nmeth.2882.
Pełny tekst źródłaKokkinopoulou, Maria, Johanna Simon, Katharina Landfester, Volker Mailänder i Ingo Lieberwirth. "Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions". Nanoscale 9, nr 25 (2017): 8858–70. http://dx.doi.org/10.1039/c7nr02977b.
Pełny tekst źródłaStone, John E., Ryan McGreevy, Barry Isralewitz i Klaus Schulten. "GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting". Faraday Discuss. 169 (2014): 265–83. http://dx.doi.org/10.1039/c4fd00005f.
Pełny tekst źródłaWang, Lincong, Hui Qiao, Chen Cao, Shutan Xu i Shuxue Zou. "An Accurate Model for Biomolecular Helices and Its Application to Helix Visualization". PLOS ONE 10, nr 6 (30.06.2015): e0129653. http://dx.doi.org/10.1371/journal.pone.0129653.
Pełny tekst źródłaAndo, Toshio, Takayuki Uchihashi i Takeshi Fukuma. "High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes". Progress in Surface Science 83, nr 7-9 (listopad 2008): 337–437. http://dx.doi.org/10.1016/j.progsurf.2008.09.001.
Pełny tekst źródłaJin, Gang, Pentti Tengvall, Ingemar Lundström i Hans Arwin. "A Biosensor Concept Based on Imaging Ellipsometry for Visualization of Biomolecular Interactions". Analytical Biochemistry 232, nr 1 (listopad 1995): 69–72. http://dx.doi.org/10.1006/abio.1995.9959.
Pełny tekst źródłaSehnal, David, Sebastian Bittrich, Mandar Deshpande, Radka Svobodová, Karel Berka, Václav Bazgier, Sameer Velankar, Stephen K. Burley, Jaroslav Koča i Alexander S. Rose. "Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures". Nucleic Acids Research 49, W1 (6.05.2021): W431—W437. http://dx.doi.org/10.1093/nar/gkab314.
Pełny tekst źródłaWalter, Peter, Sam Ansari i Volkhard Helms. "The ABC (Analysing Biomolecular Contacts)-database". Journal of Integrative Bioinformatics 4, nr 1 (1.03.2007): 31–39. http://dx.doi.org/10.1515/jib-2007-50.
Pełny tekst źródłaHaghizadeh, Anahita, Mariam Iftikhar, Shiba S. Dandpat i Trey Simpson. "Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers". International Journal of Molecular Sciences 24, nr 3 (31.01.2023): 2668. http://dx.doi.org/10.3390/ijms24032668.
Pełny tekst źródłaR. Shaw, Olivia, i Jodi A. Hadden-Perilla. "TactViz: A VMD Plugin for Tactile Visualization of Protein Structures". Journal of Science Education for Students with Disabilities 23, nr 1 (21.10.2020): 1–8. http://dx.doi.org/10.14448/jsesd.12.0015.
Pełny tekst źródłaSchlick, Tamar. "Engineering Teams Up with Computer-Simulation and Visualization Tools to Probe Biomolecular Mechanisms". Biophysical Journal 85, nr 1 (lipiec 2003): 1–4. http://dx.doi.org/10.1016/s0006-3495(03)74448-8.
Pełny tekst źródłaDries, Daniel R., Diane M. Dean, Laura L. Listenberger, Walter R. P. Novak, Margaret A. Franzen i Paul A. Craig. "An expanded framework for biomolecular visualization in the classroom: Learning goals and competencies". Biochemistry and Molecular Biology Education 45, nr 1 (3.08.2016): 69–75. http://dx.doi.org/10.1002/bmb.20991.
Pełny tekst źródłaKurosu, Jun, Kaname Kanai i Jun’ya Tsutsumi. "Label-free visualization of nano-thick biomolecular binding by electric-double-layer modulation". Sensors and Actuators B: Chemical 382 (maj 2023): 133548. http://dx.doi.org/10.1016/j.snb.2023.133548.
Pełny tekst źródłaVymětal, Jiří, David Jakubec, Jakub Galgonek i Jiří Vondrášek. "Amino Acid Interactions (INTAA) web server v2.0: a single service for computation of energetics and conservation in biomolecular 3D structures". Nucleic Acids Research 49, W1 (21.05.2021): W15—W20. http://dx.doi.org/10.1093/nar/gkab377.
Pełny tekst źródłaNemoto, Tomomi. "Visualization and Analysis of Cellular and Biomolecular Dynamics by using Ultra-Short Pulse Laser". Nippon Laser Igakkaishi 30, nr 4 (2009): 435–40. http://dx.doi.org/10.2530/jslsm.30.435.
Pełny tekst źródłaBaroroh, S.Si., M.Biotek., Umi, Zahra Silmi Muscifa, Wanda Destiarani, Fauzian Giansyah Rohmatullah i Muhammad Yusuf. "Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer". Indonesian Journal of Computational Biology (IJCB) 2, nr 1 (21.07.2023): 22. http://dx.doi.org/10.24198/ijcb.v2i1.46322.
Pełny tekst źródłaLe, Kathy H., Jared Adolf-Bryfogle, Jason C. Klima, Sergey Lyskov, Jason W. Labonte, Steven Bertolani, Shourya S. Roy Burman i in. "PyRosetta Jupyter Notebooks Teach Biomolecular Structure Prediction and Design". Biophysicist 2, nr 1 (1.04.2021): 108–22. http://dx.doi.org/10.35459/tbp.2019.000147.
Pełny tekst źródłaWu, Zhaolong, Enbo Chen, Shuwen Zhang, Yinping Ma i Youdong Mao. "Visualizing Conformational Space of Functional Biomolecular Complexes by Deep Manifold Learning". International Journal of Molecular Sciences 23, nr 16 (9.08.2022): 8872. http://dx.doi.org/10.3390/ijms23168872.
Pełny tekst źródłaBotello-Smith, Wesley M., Qin Cai i Ray Luo. "Biological applications of classical electrostatics methods". Journal of Theoretical and Computational Chemistry 13, nr 03 (maj 2014): 1440008. http://dx.doi.org/10.1142/s0219633614400082.
Pełny tekst źródłaAmyot, Romain, i Holger Flechsig. "BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics". PLOS Computational Biology 16, nr 11 (18.11.2020): e1008444. http://dx.doi.org/10.1371/journal.pcbi.1008444.
Pełny tekst źródłaGaur, Pankaj, Ajay Kumar, Shalmoli Bhattacharyya i Subrata Ghosh. "Biomolecular recognition at the cellular level: geometrical and chemical functionality dependence of a low phototoxic cationic probe for DNA imaging". Journal of Materials Chemistry B 4, nr 28 (2016): 4895–900. http://dx.doi.org/10.1039/c6tb00787b.
Pełny tekst źródłaUchihashi, Takayuki, i Simon Scheuring. "Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes". Biochimica et Biophysica Acta (BBA) - General Subjects 1862, nr 2 (luty 2018): 229–40. http://dx.doi.org/10.1016/j.bbagen.2017.07.010.
Pełny tekst źródłaNersisyan, Lilit, Ruben Samsonyan i Arsen Arakelyan. "CyKEGGParser: tailoring KEGG pathways to fit into systems biology analysis workflows". F1000Research 3 (14.08.2014): 145. http://dx.doi.org/10.12688/f1000research.4410.2.
Pełny tekst źródłaGopal, Sahana, Ciro Chiappini, James P. K. Armstrong, Qu Chen, Andrea Serio, Chia-Chen Hsu, Christoph Meinert i in. "Immunogold FIB-SEM: Combining Volumetric Ultrastructure Visualization with 3D Biomolecular Analysis to Dissect Cell-Environment Interactions". Advanced Materials 31, nr 32 (13.06.2019): 1900488. http://dx.doi.org/10.1002/adma.201900488.
Pełny tekst źródłaSarkar, Daipayan, Martin Kulke i Josh V. Vermaas. "LongBondEliminator: A Molecular Simulation Tool to Remove Ring Penetrations in Biomolecular Simulation Systems". Biomolecules 13, nr 1 (5.01.2023): 107. http://dx.doi.org/10.3390/biom13010107.
Pełny tekst źródłaKjaergaard, Magnus, Laura Skak Rasmussen, Johan Nygaard Vinther, Kasper Røjkjær Andersen, Ebbe Sloth Andersen, Esben Lorentzen, Søren S. Thirup, Daniel E. Otzen i Ditlev Egeskov Brodersen. "A Semester-Long Learning Path Teaching Computational Skills via Molecular Graphics in PyMOL". Biophysicist 3, nr 2 (1.12.2022): 106–14. http://dx.doi.org/10.35459/tbp.2022.000219.
Pełny tekst źródłaWeatherby, Gerard, i Michael Robert Gryk. "Embedding Analytics within the Curation of Scientific Workflows". International Journal of Digital Curation 15, nr 1 (31.12.2020): 8. http://dx.doi.org/10.2218/ijdc.v15i1.709.
Pełny tekst źródłaAbdelmoula, Walid M., Benjamin Balluff, Sonja Englert, Jouke Dijkstra, Marcel J. T. Reinders, Axel Walch, Liam A. McDonnell i Boudewijn P. F. Lelieveldt. "Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data". Proceedings of the National Academy of Sciences 113, nr 43 (10.10.2016): 12244–49. http://dx.doi.org/10.1073/pnas.1510227113.
Pełny tekst źródłaNeszmélyi, A., E. László i J. Holló. "Biomolecular Modelling: An Interactive Program for the Visualization and Modelling of Carbohydrate (Starch and Oligosaccharide) Complexes in Solution". Starch - Stärke 39, nr 11 (1987): 393–96. http://dx.doi.org/10.1002/star.19870391107.
Pełny tekst źródłaFujimoto, Hirofumi, Miroslav Pinak, Toshiyuki Nemoto, Kiyotaka Sakamoto, Kazuyuki Yamada, Yoshiyuki Hoshi i Etsuo Kume. "Large scale MD simulation of 8-oxoguanine and AP site multiple lesioned DNA molecule combined with biomolecular visualization software". Journal of Molecular Structure: THEOCHEM 681, nr 1-3 (lipiec 2004): 1–8. http://dx.doi.org/10.1016/j.theochem.2003.12.053.
Pełny tekst źródłaMartins, Jorge Emanuel, Davide D’Alimonte, Joana Simões, Sara Sousa, Eduardo Esteves, Nuno Rosa, Maria José Correia, Mário Simões i Marlene Barros. "MODeLING.Vis: A Graphical User Interface Toolbox Developed for Machine Learning and Pattern Recognition of Biomolecular Data". Symmetry 15, nr 1 (23.12.2022): 42. http://dx.doi.org/10.3390/sym15010042.
Pełny tekst źródłaBaltoumas, Fotis A., Sofia Zafeiropoulou, Evangelos Karatzas, Mikaela Koutrouli, Foteini Thanati, Kleanthi Voutsadaki, Maria Gkonta i in. "Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review". Biomolecules 11, nr 8 (20.08.2021): 1245. http://dx.doi.org/10.3390/biom11081245.
Pełny tekst źródłaYeung, Enoch, Jongmin Kim, Ye Yuan, Jorge Gonçalves i Richard M. Murray. "Data-driven network models for genetic circuits from time-series data with incomplete measurements". Journal of The Royal Society Interface 18, nr 182 (wrzesień 2021): 20210413. http://dx.doi.org/10.1098/rsif.2021.0413.
Pełny tekst źródłaHuang, Daiyun, Bowen Song, Jingjue Wei, Jionglong Su, Frans Coenen i Jia Meng. "Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data". Bioinformatics 37, Supplement_1 (1.07.2021): i222—i230. http://dx.doi.org/10.1093/bioinformatics/btab278.
Pełny tekst źródłaLACROIX, ZOÉ, LOUIQA RASCHID i BARBARA A. ECKMAN. "TECHNIQUES FOR OPTIMIZATION OF QUERIES ON INTEGRATED BIOLOGICAL RESOURCES". Journal of Bioinformatics and Computational Biology 02, nr 02 (czerwiec 2004): 375–411. http://dx.doi.org/10.1142/s0219720004000648.
Pełny tekst źródłaDeVore, Kira, i Po-Lin Chiu. "Probing Structural Perturbation of Biomolecules by Extracting Cryo-EM Data Heterogeneity". Biomolecules 12, nr 5 (24.04.2022): 628. http://dx.doi.org/10.3390/biom12050628.
Pełny tekst źródłaYamamoto, Daisuke, Naoki Nagura, Saeko Omote, Masaaki Taniguchi i Toshio Ando. "3TP3-06 Streptavidin 2D crystals as solid supports for the visualization of biomolecular processes by high-speed AFM(The 47th Annual Meeting of the Biophysical Society of Japan)". Seibutsu Butsuri 49, supplement (2009): S62. http://dx.doi.org/10.2142/biophys.49.s62_1.
Pełny tekst źródła