Gotowa bibliografia na temat „Biomolecular systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biomolecular systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biomolecular systems"
Miró, Jesús M., i Alfonso Rodríguez-Patón. "Biomolecular Computing Devices in Synthetic Biology". International Journal of Nanotechnology and Molecular Computation 2, nr 2 (kwiecień 2010): 47–64. http://dx.doi.org/10.4018/978-1-59904-996-0.ch014.
Pełny tekst źródłaKatrusiak, Andrzej, Michalina Aniola, Kamil Dziubek, Kinga Ostrowska i Ewa Patyk. "Biomolecular systems under pressure". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1188. http://dx.doi.org/10.1107/s2053273314088111.
Pełny tekst źródłaNiranjan, Vidya, Purushotham Rao, Akshay Uttarkar i Jitendra Kumar. "Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS". PLOS ONE 18, nr 8 (3.08.2023): e0288264. http://dx.doi.org/10.1371/journal.pone.0288264.
Pełny tekst źródłaEmenecker, Ryan J., Alex S. Holehouse i Lucia C. Strader. "Biological Phase Separation and Biomolecular Condensates in Plants". Annual Review of Plant Biology 72, nr 1 (17.06.2021): 17–46. http://dx.doi.org/10.1146/annurev-arplant-081720-015238.
Pełny tekst źródłaWang, Li, Coucong Gong, Xinzhu Yuan i Gang Wei. "Controlling the Self-Assembly of Biomolecules into Functional Nanomaterials through Internal Interactions and External Stimulations: A Review". Nanomaterials 9, nr 2 (18.02.2019): 285. http://dx.doi.org/10.3390/nano9020285.
Pełny tekst źródłaSmith, Paul E., i B. Montgomery Pettitt. "Modeling Solvent in Biomolecular Systems". Journal of Physical Chemistry 98, nr 39 (wrzesień 1994): 9700–9711. http://dx.doi.org/10.1021/j100090a002.
Pełny tekst źródłaRhodes, William. "Coferent dynamics in biomolecular systems". Journal of Molecular Liquids 41 (październik 1989): 165–80. http://dx.doi.org/10.1016/0167-7322(89)80076-5.
Pełny tekst źródłaRowe, Rhianon K., i P. Shing Ho. "Relationships between hydrogen bonds and halogen bonds in biological systems". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 73, nr 2 (29.03.2017): 255–64. http://dx.doi.org/10.1107/s2052520617003109.
Pełny tekst źródłaWang, Yue, Lei Ren, Hongzhen Peng, Linjie Guo i Lihua Wang. "DNA-Programmed Biomolecular Spatial Pattern Recognition". Chemosensors 11, nr 7 (27.06.2023): 362. http://dx.doi.org/10.3390/chemosensors11070362.
Pełny tekst źródłaRen, Pengyu, Jaehun Chun, Dennis G. Thomas, Michael J. Schnieders, Marcelo Marucho, Jiajing Zhang i Nathan A. Baker. "Biomolecular electrostatics and solvation: a computational perspective". Quarterly Reviews of Biophysics 45, nr 4 (listopad 2012): 427–91. http://dx.doi.org/10.1017/s003358351200011x.
Pełny tekst źródłaRozprawy doktorskie na temat "Biomolecular systems"
Brampton, Christopher. "Forces in biomolecular systems". Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429077.
Pełny tekst źródłaShah, Rushina(Rushina Jaidip). "Input-output biomolecular systems". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129016.
Pełny tekst źródłaCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 194-206).
The ability of cells to sense and respond to their environment is encoded in biomolecular reaction networks, in which information travels through processes such as production, modification, and removal of biomolecules. These reaction networks can be modeled as input-output systems, where the input, state and output variables are concentrations of the biomolecules involved in these reactions. Tools from non-linear dynamics and control theory can be leveraged to analyze and control these systems. In this thesis, we study two key biomolecular networks. In part 1 of this thesis, we study the input-output behavior of signaling systems, which are responsible for the transmission of information both from outside and from within the cells, and are ubiquitous, playing a role in cell cycle progression, survival, growth, differentiation and apoptosis. A signaling pathway transmits information from an upstream system to downstream systems, ideally in a unidirectional fashion.
A key obstacle to unidirectional transmission is retroactivity, the additional reaction flux that affects a system once its species interact with those of downstream systems. In this work, we identify signaling architectures that can overcome retroactivity, allowing unidirectional transmission of signals. These findings can be used to decompose natural signal transduction networks into modules, and at the same time, they establish a library of devices that can be used in synthetic biology to facilitate modular circuit design. In part 2 of this thesis, we design inputs to trigger a transition of cell-fate from one cell type to another. The process of cell-fate decision-making is often modeled by means of multistable gene regulatory networks, where different stable steady states represent distinct cell phenotypes. In this thesis, we provide theoretical results that guide the selection of inputs that trigger a transition, i.e., reprogram the network, to a desired stable steady state.
Our results depend uniquely on the structure of the network and are independent of specific parameter values. We demonstrate these results by means of several examples, including models of the extended network controlling stem-cell maintenance and differentiation.
by Rushina Shah.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineering
Xin, W. (Weidong). "Continuum electrostatics of biomolecular systems". Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514287602.
Pełny tekst źródłaJanosi, Lorant. "Multiscale modeling of biomolecular systems". Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4801.
Pełny tekst źródłaThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on February 14, 2008) Vita. Includes bibliographical references.
Desai, Amruta. "Design support for biomolecular systems". Cincinnati, Ohio : University of Cincinnati, 2010. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1265986863.
Pełny tekst źródłaAdvisor: Carla Purdy. Title from electronic thesis title page (viewed Apr. 19, 2010). Includes abstract. Keywords: Biological pathways; weighted gate; BMDL; pyrimidine. Includes bibliographical references.
Diez, Stefan, i Jonathon Howard. "Nanotechnological applications of biomolecular motor systems". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1223724473713-41365.
Pełny tekst źródłaRecent advances in understanding how biomolecular motors work have raised the possibility that they might find applications as nanomachines. For example, they could be used as molecule- sized robots that work in molecular factories where small, but intricate structures are made on tiny assembly lines, that construct networks of molecular conductors and transistors for use as electrical circuits, or that continually patrol inside “adaptive” materials and repair them when necessary. Thus biomolecular motors could form the basis of bottom-up approaches for constructing, active structuring and maintenance at the nanometer scale
Dey, Abhishek. "Modeling and identification of biomolecular systems". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8121.
Pełny tekst źródłaTyka, Michael. "Absolute free energy calculations for biomolecular systems". Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439666.
Pełny tekst źródłaShu, Wenmiao. "Biomolecular sensing and actuation using microcantilever systems". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612828.
Pełny tekst źródłaLickert, Benjamin [Verfasser], i Gerhard [Akademischer Betreuer] Stock. "Data-based Langevin modeling of biomolecular systems". Freiburg : Universität, 2021. http://d-nb.info/1241962669/34.
Pełny tekst źródłaKsiążki na temat "Biomolecular systems"
van Gunsteren, Wilfred F., Paul K. Weiner i Anthony J. Wilkinson, red. Computer Simulation of Biomolecular Systems. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-1120-3.
Pełny tekst źródłaGarcía Gómez-Tejedor, Gustavo, i Martina Christina Fuss, red. Radiation Damage in Biomolecular Systems. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2564-5.
Pełny tekst źródłaChristina, Fuss Martina, i SpringerLink (Online service), red. Radiation Damage in Biomolecular Systems. Dordrecht: Springer Netherlands, 2012.
Znajdź pełny tekst źródłaRizzarelli, E., i T. Theophanides, red. Chemistry and Properties of Biomolecular Systems. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3620-4.
Pełny tekst źródłaRusso, N., J. Anastassopoulou i G. Barone, red. Properties and Chemistry of Biomolecular Systems. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0822-5.
Pełny tekst źródłaVasilescu, D., J. Jaz, L. Packer i B. Pullman, red. Water and Ions in Biomolecular Systems. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7253-9.
Pełny tekst źródłaRyabov, Artem. Stochastic Dynamics and Energetics of Biomolecular Systems. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27188-0.
Pełny tekst źródła1938-, Beveridge David L., Jorgensen William L i New York Academy of Sciences., red. Computer simulation of chemical and biomolecular systems. New York, N.Y: New York Academy of Sciences, 1986.
Znajdź pełny tekst źródłaRui-Sheng, Wang, i Zhang Xiang-Sun 1943-, red. Biomolecular networks: Methods and applications in systems biology. Hoboken, N.J: Wiley, 2009.
Znajdź pełny tekst źródłaJ, Wilkinson Anthony, Gunsteren Wilfred F. van i Weiner Paul K, red. Computer simulation of biomolecular systems: Theoretical and experimental applications. Dordrecht: Kluwer, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Biomolecular systems"
Solov’yov, Ilia A., Andrey V. Korol i Andrey V. Solov’yov. "Biomolecular Systems". W Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer, 171–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56087-8_5.
Pełny tekst źródłaChandran, Harish, Sudhanshu Garg, Nikhil Gopalkrishnan i John H. Reif. "Biomolecular Computing Systems". W Biomolecular Information Processing, 199–223. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645480.ch11.
Pełny tekst źródłaVasilescu, D., i H. Kranck. "Noise in Biomolecular Systems". W Modern Bioelectrochemistry, 397–430. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2105-7_14.
Pełny tekst źródłaFernández Stigliano, Ariel. "Multitarget Control of Drug Impact: A Therapeutic Imperative in Cancer Systems Biology". W Biomolecular Interfaces, 285–309. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16850-0_13.
Pełny tekst źródłaStrack, Guinevere, Heather R. Luckarift, Glenn R. Johnson i Evgeny Katz. "Information Security Applications Based on Biomolecular Systems". W Biomolecular Information Processing, 103–16. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645480.ch6.
Pełny tekst źródłaWilson, Ian D., i Jeremy K. Nicholson. "Chapter 12. Metabonomics and Global Systems Biology". W RSC Biomolecular Sciences, 295–316. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847558107-00295.
Pełny tekst źródłaFernández Stigliano, Ariel. "Wrapping Drug Combinations for Therapeutic Editing of Side Effects: Systems Biology Meets Wrapping Technology". W Biomolecular Interfaces, 259–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16850-0_12.
Pełny tekst źródłaChalikian, Tigran V., i Robert B. Macgregor. "Volumetric Properties of Biomolecular Systems". W Encyclopedia of Biophysics, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35943-9_10071-1.
Pełny tekst źródłaCiobanu, Gabriel. "Software Verification of Biomolecular Systems". W Natural Computing Series, 39–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18734-6_3.
Pełny tekst źródłaKatz, Evgeny. "Bioelectronic Devices Controlled by Enzyme-Based Information Processing Systems". W Biomolecular Information Processing, 61–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645480.ch4.
Pełny tekst źródłaStreszczenia konferencji na temat "Biomolecular systems"
Arbon, Robert E., Alex J. Jones, Lars A. Bratholm, Tom Mitchell i David R. Glowacki. "Sonifying Stochastic Walks on Biomolecular Energy Landscapes". W The 24th International Conference on Auditory Display. Arlington, Virginia: The International Community for Auditory Display, 2018. http://dx.doi.org/10.21785/icad2018.032.
Pełny tekst źródłaNguyen, Mary-Anne, i Andy Sarles. "Microfabrication for Packaged Biomolecular Unit Cells". W ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3068.
Pełny tekst źródłaMadden(, Paul A., James Penman i Ettore Fois. "Ab Initio Molecular Dynamics Applied to Molecular Systems". W Advances in biomolecular simulations. AIP, 1991. http://dx.doi.org/10.1063/1.41316.
Pełny tekst źródłavan Gunsteren, W. F. "Computer Simulation of Biomolecular Systems: Overview of Time-Saving Techniques". W Advances in biomolecular simulations. AIP, 1991. http://dx.doi.org/10.1063/1.41334.
Pełny tekst źródłaHaring Bolivar, Peter G. "Biomolecular Sensing with Integrated THz Systems". W Optical Terahertz Science and Technology. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/otst.2005.wb1.
Pełny tekst źródłaAizawa, Masuo, T. Niimi, T. Haruyama i E. Kobatake. "Design of environment-responsive biomolecular systems". W 1996 Symposium on Smart Structures and Materials, redaktor Andrew Crowson. SPIE, 1996. http://dx.doi.org/10.1117/12.232133.
Pełny tekst źródłaFreeman, Eric C., Michael K. Philen i Donald J. Leo. "Principles of Biomolecular Network Design". W ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3113.
Pełny tekst źródłaLiu, Tse-Yen, I.-Shun Wang, Pei-Wen Yen, Shiang-Chi Lin, Kuan-Chou Lin, Jhu-Siang Jheng, Da-Yuan Chang i Chih-Ting Lin. "CMOS-based biomolecular diagnosis platform". W 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2017. http://dx.doi.org/10.1109/nems.2017.8016982.
Pełny tekst źródłaJiang, Hua, Marc D. Riedel i Keshab K. Parhi. "Digital signal processing with biomolecular reactions". W 2010 IEEE Workshop On Signal Processing Systems (SiPS). IEEE, 2010. http://dx.doi.org/10.1109/sips.2010.5624796.
Pełny tekst źródłaTamba, Masaaki, i Takashi Nakakuki. "Renewable implementation of rational biomolecular systems design". W 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2020. http://dx.doi.org/10.23919/sice48898.2020.9240329.
Pełny tekst źródłaRaporty organizacyjne na temat "Biomolecular systems"
Beebe, David J. An Advanced Platform for Biomolecular Detection and Analysis Systems. Fort Belvoir, VA: Defense Technical Information Center, luty 2005. http://dx.doi.org/10.21236/ada432950.
Pełny tekst źródłaBachand, George David, i Amanda Carroll-Portillo. Engineering intracellular active transport systems as in vivo biomolecular tools. Office of Scientific and Technical Information (OSTI), listopad 2006. http://dx.doi.org/10.2172/899371.
Pełny tekst źródłaClark, Douglas S. Performance-Enhancing Biomolecular Treatment Strategies for Naval Graywater Filtration Systems. Fort Belvoir, VA: Defense Technical Information Center, marzec 2002. http://dx.doi.org/10.21236/ada399945.
Pełny tekst źródłaHummer, G., A. E. Garcia i D. M. Soumpasis. Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems. Office of Scientific and Technical Information (OSTI), październik 1994. http://dx.doi.org/10.2172/10186924.
Pełny tekst źródłaMoore, Jeff, Hassan Aref, Ron Adrian, Deborah Leckband i David J. Beebe. Engineering Solutions for Robust and Efficient Microfluidic Biomolecular Systems: Mixing, Fabrication, Diagnostics, Modeling, Antifouling and Functional Materials. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2002. http://dx.doi.org/10.21236/ada411413.
Pełny tekst źródłaRoux, B., Y. Luo i W. Jiang. NAMD - The Engine for Large-Scale Classical MD Simulations of Biomolecular Systems Based on a Polarizable Force Field: ALCF-2 Early Science Program Technical Report. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1079771.
Pełny tekst źródłaRodriguez Muxica, Natalia. Open configuration options Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources. Inter-American Development Bank, luty 2022. http://dx.doi.org/10.18235/0003982.
Pełny tekst źródłaReichert, D. E., i P. J. A. Kenis. Microfluidic Radiometal Labeling Systems for Biomolecules. Office of Scientific and Technical Information (OSTI), grudzień 2011. http://dx.doi.org/10.2172/1032377.
Pełny tekst źródłaDoktycz, M. J. Dual Manifold System for Arraying Biomolecules. Office of Scientific and Technical Information (OSTI), kwiecień 2001. http://dx.doi.org/10.2172/814531.
Pełny tekst źródłaDoktycz, M. J. CRADA Final Report-Dual Manifold System for Arraying Biomolecules. Office of Scientific and Technical Information (OSTI), maj 2001. http://dx.doi.org/10.2172/814372.
Pełny tekst źródła