Spis treści
Gotowa bibliografia na temat „Biomolecular encryption”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biomolecular encryption”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biomolecular encryption"
Fischer, T., M. Neebe, T. Juchem i N. A. Hampp. "Biomolecular optical data storage and data encryption". IEEE Transactions on Nanobioscience 2, nr 1 (marzec 2003): 1–5. http://dx.doi.org/10.1109/tnb.2003.810163.
Pełny tekst źródłaK, Menaka. "ENHANCING INFORMATION ENCRYPTION WITH BIOMOLECULAR SEQUENCES USING NDES ALGORITHM". International Journal of Advanced Research in Computer Science 8, nr 9 (30.09.2017): 482–85. http://dx.doi.org/10.26483/ijarcs.v8i9.5006.
Pełny tekst źródłaBenyahia, Kadda, Abdelkader Khobzaoui i Soumia Benbakreti. "DNA sequences for robust encryption: a strategy for IoT security enhancement". STUDIES IN ENGINEERING AND EXACT SCIENCES 5, nr 1 (22.04.2024): 1296–316. http://dx.doi.org/10.54021/seesv5n1-067.
Pełny tekst źródłaAbbasi, Ali Asghar, Mahdi Mazinani i Rahil Hosseini. "Evolutionary-based image encryption using biomolecules and non-coupled map lattice". Optics & Laser Technology 140 (sierpień 2021): 106974. http://dx.doi.org/10.1016/j.optlastec.2021.106974.
Pełny tekst źródłaAbbasi, Ali Asghar, Mahdi Mazinani i Rahil Hosseini. "Evolutionary-based image encryption using biomolecules operators and non-coupled map lattice". Optik 219 (październik 2020): 164949. http://dx.doi.org/10.1016/j.ijleo.2020.164949.
Pełny tekst źródłaGao, Rui, Zhuang Cai, Jianbang Wang i Huajie Liu. "Condensed DNA Nanosphere for DNA Origami Cryptography". Chemistry 5, nr 4 (8.11.2023): 2406–17. http://dx.doi.org/10.3390/chemistry5040159.
Pełny tekst źródłaSun, Lining. "(Digital Presentation) Tailored Rare Earth-Doped Nanomaterials Toward Information Storage and Deep Learning Decoding". ECS Meeting Abstracts MA2022-02, nr 51 (9.10.2022): 1981. http://dx.doi.org/10.1149/ma2022-02511981mtgabs.
Pełny tekst źródłaZhang, Yinan, Fei Wang, Jie Chao, Mo Xie, Huajie Liu, Muchen Pan, Enzo Kopperger i in. "DNA origami cryptography for secure communication". Nature Communications 10, nr 1 (29.11.2019). http://dx.doi.org/10.1038/s41467-019-13517-3.
Pełny tekst źródłaSheng, Chengju, Xiujuan Gao, Yanjun Ding i Mingming Guo. "Water‐Soluble Luminescent Polymers with Room Temperature Phosphorescence Based on the α‐Amino Acids". Macromolecular Rapid Communications, 15.05.2024. http://dx.doi.org/10.1002/marc.202400201.
Pełny tekst źródłaLiu, Xin, Yang Xu, Dan Luo, Gang Xu, Neal Xiong i Xiu-Bo Chen. "The secure judgment of graphic similarity against malicious adversaries and its applications". Scientific Reports 13, nr 1 (21.03.2023). http://dx.doi.org/10.1038/s41598-023-30741-6.
Pełny tekst źródłaRozprawy doktorskie na temat "Biomolecular encryption"
Berton, Chloé. "Sécurité des données stockées sur molécules d’ADN". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.
Pełny tekst źródłaThe volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations