Gotowa bibliografia na temat „Biomolecular Devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biomolecular Devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biomolecular Devices"
Dey, D., i T. Goswami. "Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication". Journal of Biomedicine and Biotechnology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/348218.
Pełny tekst źródłaMiró, Jesús M., i Alfonso Rodríguez-Patón. "Biomolecular Computing Devices in Synthetic Biology". International Journal of Nanotechnology and Molecular Computation 2, nr 2 (kwiecień 2010): 47–64. http://dx.doi.org/10.4018/978-1-59904-996-0.ch014.
Pełny tekst źródłaYoshimine, Hiroshi, Kai Sasaki i Hiroyuki Furusawa. "Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection". Sensors 23, nr 1 (27.12.2022): 281. http://dx.doi.org/10.3390/s23010281.
Pełny tekst źródłaMalhotra, B. D., i Rahul Singhal. "Conducting polymer based biomolecular electronic devices". Pramana 61, nr 2 (sierpień 2003): 331–43. http://dx.doi.org/10.1007/bf02708313.
Pełny tekst źródłaMontemagno, Carlo, i George Bachand. "Constructing nanomechanical devices powered by biomolecular motors". Nanotechnology 10, nr 3 (12.08.1999): 225–31. http://dx.doi.org/10.1088/0957-4484/10/3/301.
Pełny tekst źródłaAlam, Sadaf R., Pratul K. Agarwal, Melissa C. Smith, Jeffrey S. Vetter i David Caliga. "Using FPGA Devices to Accelerate Biomolecular Simulations". Computer 40, nr 3 (marzec 2007): 66–73. http://dx.doi.org/10.1109/mc.2007.108.
Pełny tekst źródłaEspinosa, Francisco, Manuel Uhlig i Ricardo Garcia. "Molecular Recognition by Silicon Nanowire Field-Effect Transistor and Single-Molecule Force Spectroscopy". Micromachines 13, nr 1 (8.01.2022): 97. http://dx.doi.org/10.3390/mi13010097.
Pełny tekst źródłaFujimoto, Keiji. "Design and Synthesis of Biomolecular Devices Using Liposomes". MEMBRANE 30, nr 6 (2005): 293–97. http://dx.doi.org/10.5360/membrane.30.293.
Pełny tekst źródłaBachand, George D., Nathan F. Bouxsein, Virginia VanDelinder i Marlene Bachand. "Biomolecular motors in nanoscale materials, devices, and systems". Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 6, nr 2 (11.12.2013): 163–77. http://dx.doi.org/10.1002/wnan.1252.
Pełny tekst źródłaLara, Sandra, i André Perez-Potti. "Applications of Nanomaterials for Immunosensing". Biosensors 8, nr 4 (1.11.2018): 104. http://dx.doi.org/10.3390/bios8040104.
Pełny tekst źródłaRozprawy doktorskie na temat "Biomolecular Devices"
Heucke, Stephan F. "Advancing nanophotonic devices for biomolecular analysis". Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-165294.
Pełny tekst źródłaMelli, Mauro. "Mechanical resonating devices and their applications in biomolecular studies". Doctoral thesis, SISSA, 2010. http://hdl.handle.net/20.500.11767/4646.
Pełny tekst źródłaSawlekar, Rucha. "Programming dynamic nonlinear biomolecular devices using DNA strand displacement reactions". Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/91757/.
Pełny tekst źródłaKearns, Gregory Justin. "Engineering interfaces at the micro- and nanoscale for biomolecular and nanoparticle self-assembled devices /". view abstract or download file of text, 2007. http://proquest.umi.com/pqdweb?did=1417810561&sid=2&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Pełny tekst źródłaTypescript. Includes vita and abstract. Includes bibliographical references (leaves 158-174). Also available for download via the World Wide Web; free to University of Oregon users.
Malmstadt, Noah. "Temperature-dependant [sic] smart bead adhesion : a versatile platform for biomolecular immobilization in microfluidic devices /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/8019.
Pełny tekst źródłaTiwari, Purushottam Babu. "Multimode Analysis of Nanoscale Biomolecular Interactions". FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1923.
Pełny tekst źródłaHahn, Jaeseung. "Programmable biomolecular integration and dynamic behavior of DNA-based systems for development of biomedical nano-devices". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122213.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references.
Departing from the traditional role as a carrier of genetic information, DNA has emerged as an engineering material for construction of nano-devices. The advances in the field of DNA nanotechnology have enabled design and synthesis of DNA nanostructures of arbitrary shapes and manipulation of the nanostructures' conformations in a programmable way. DNA-based systems offer potential applications in medicine by manipulating the biological components and processes that occur at the nanometer scale. To accelerate the translation of DNA-based systems for medical applications, we identified some of the challenges that are hindering our ability to construct biomedical nano-devices and addressed these challenges through advances in both structural and dynamic DNA nanotechnology. First, we tested the stability of DNA nanostructures in biological environments to highlight the necessity of and path towards protection strategies for prolonged integrity of biomedical nano-devices. Then, we constructed a platform for robust 3D molecular integration using DNA origami technique and implemented the platform for a nanofactory capable of production of therapeutic RNA to overcome the challenges in RNA delivery. Moreover, we established a mechanism to drive DNA devices by changing temperature with prolonged dynamic behavior that was previously challenging to accomplish without special modification of DNA and/or equipment not readily available in a typical lab setting. Together, the progress made in this thesis bring us another step closer to realization of medical applications of DNA nanotechnology by focusing on the challenges in both structural and dynamic aspects of the technology.
by Jaeseung Hahn.
Ph. D. in Medical Engineering and Medical Physics
Ph.D.inMedicalEngineeringandMedicalPhysics Harvard-MIT Program in Health Sciences and Technology
Razaq, Aamir. "Development of Cellulose-Based, Nanostructured, Conductive Paper for Biomolecular Extraction and Energy Storage Applications". Doctoral thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158444.
Pełny tekst źródłaHeucke, Stephan F. Verfasser], i Hermann E. [Akademischer Betreuer] [Gaub. "Advancing nanophotonic devices for biomolecular analysis : force spectroscopy and nanopositioning of single molecules in zero-mode waveguides / Stephan F. Heucke. Betreuer: Hermann Gaub". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2013. http://d-nb.info/1046785311/34.
Pełny tekst źródłaAbsher, Jason Matthew. "THE DEVELOPMENT OF MICROFLUIDIC DEVICES FOR THE PRODUCTION OF SAFE AND EFFECTIVE NON-VIRAL GENE DELIVERY VECTORS". UKnowledge, 2018. https://uknowledge.uky.edu/cme_etds/85.
Pełny tekst źródłaKsiążki na temat "Biomolecular Devices"
Jia, Yuan. Polymer-Based MEMS Calorimetric Devices for Characterization of Biomolecular Interactions. [New York, N.Y.?]: [publisher not identified], 2017.
Znajdź pełny tekst źródła1956-, Köhler J. M., Mejevaia T i Saluz H. P. 1952-, red. Microsystem technology: A powerful tool for biomolecular studies. Basel, Switzerland: Birkhäuser Verlag, 1999.
Znajdź pełny tekst źródłaBryant, Richard. Optically active polymers, organometallics, and biomolecular materials/devices: A technical/economic analysis. Norwalk, CT: Business Communications Co., 1991.
Znajdź pełny tekst źródłaSharda, D. S., i Bansi D. Malhotra. Graphene Based Biomolecular Electronic Devices. Elsevier, 2022.
Znajdź pełny tekst źródłaSharda, D. S., i Bansi D. Malhotra. Graphene Based Biomolecular Electronic Devices. Elsevier, 2022.
Znajdź pełny tekst źródłaIbrahim, Mohamed, i Krishnendu Chakrabarty. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaIbrahim, Mohamed, i Krishnendu Chakrabarty. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaIbrahim, Mohamed, i Krishnendu Chakrabarty. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaNarlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.
Pełny tekst źródłaCzęści książek na temat "Biomolecular Devices"
Reed, Mark A., i Alan C. Seabaugh. "Prospects for Semiconductor Quantum Devices". W Molecular and Biomolecular Electronics, 15–42. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0240.ch002.
Pełny tekst źródłaHong, Felix T. "Retinal Proteins in Photovoltaic Devices". W Molecular and Biomolecular Electronics, 527–59. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0240.ch022.
Pełny tekst źródłaAlbrecht, O., K. Sakai, K. Takimoto, H. Matsuda, K. Eguchi i T. Nakagiri. "Molecular Devices Using Langmuir-Blodgett Films". W Molecular and Biomolecular Electronics, 341–71. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0240.ch013.
Pełny tekst źródłaKatz, Evgeny. "Bioelectronic Devices Controlled by Enzyme-Based Information Processing Systems". W Biomolecular Information Processing, 61–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645480.ch4.
Pełny tekst źródłaLawrence, Albert F., i Robert R. Birge. "Fundamentals of Reliability Calculations for Molecular Devices and Photochromic Memories". W Molecular and Biomolecular Electronics, 131–60. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0240.ch006.
Pełny tekst źródłaFendler, Janos H. "Colloid Chemical Approach to Band-Gap Engineering and Quantum-Tailored Devices". W Molecular and Biomolecular Electronics, 413–38. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0240.ch016.
Pełny tekst źródłaMoraes, Christopher, Yu Sun i Craig A. Simmons. "Microfabricated Devices for Studying Cellular Biomechanics and Mechanobiology". W Cellular and Biomolecular Mechanics and Mechanobiology, 145–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/8415_2010_24.
Pełny tekst źródłaCavaliere, Matteo, Nataša Jonoska, Sivan Yogev, Ron Piran, Ehud Keinan i Nadrian C. Seeman. "Biomolecular Implementation of Computing Devices with Unbounded Memory". W DNA Computing, 35–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11493785_4.
Pełny tekst źródłaReif, John H., i Thomas H. LaBean. "Engineering Natural Computation by Autonomous DNA-Based Biomolecular Devices". W Handbook of Natural Computing, 1319–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-92910-9_39.
Pełny tekst źródłaReif, John H., i Thomas H. LaBean. "Autonomous Programmable Biomolecular Devices Using Self-assembled DNA Nanostructures". W Logic, Language, Information and Computation, 297–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73445-1_21.
Pełny tekst źródłaStreszczenia konferencji na temat "Biomolecular Devices"
Villanueva, Guillermo, Gemma Rius, Josep Montserrat, Francesc Perez-Murano i Joan Bausells. "Piezoresistive Microcantilevers for Biomolecular Force Detection". W 2007 Spanish Conference on Electron Devices. IEEE, 2007. http://dx.doi.org/10.1109/sced.2007.384029.
Pełny tekst źródłaXiangrong Liu, Xiaoying shi i Ying Ju. "A programmable biomolecular computing devices with RNAi". W 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, 2010. http://dx.doi.org/10.1109/bicta.2010.5645089.
Pełny tekst źródłaBachand, George D., i Carlo D. Montemagno. "Constructing biomolecular motor-powered hybrid NEMS devices". W Asia Pacific Symposium on Microelectronics and MEMS, redaktorzy Kevin H. Chau i Sima Dimitrijev. SPIE, 1999. http://dx.doi.org/10.1117/12.364481.
Pełny tekst źródłaMajumdar, Arun. "Integrated Nanofluidic Devices and Circuits". W ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96070.
Pełny tekst źródłaDensmore, Adam, Dan-Xia Xu, Philip Waldron, Siegfried Janz, Jean Lapointe, Trevor Mischki, Gregory Lopinski, André Delâge i Pavel Cheben. "Spotter-compatible SOI waveguide devices for biomolecular sensing". W Integrated Optoelectronic Devices 2008, redaktorzy Joel A. Kubby i Graham T. Reed. SPIE, 2008. http://dx.doi.org/10.1117/12.763699.
Pełny tekst źródłaKarnik, Rohit, Chuanhua Duan, Kenneth Castelino, Rong Fan, Peidong Yang i Arun Majumdar. "Transport of Ions and Molecules in Nanofluidic Devices". W ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62065.
Pełny tekst źródłaMiyahara, Y., C. Hamai-Kataoka, A. Matsumoto, T. Goda i Y. Maeda. "Detection of biomolecular recognition using Bio-transistors". W 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.l-1-1.
Pełny tekst źródłaKrasinski, Tadeusz, Sebastian Sakowski i Tomasz Poplawski. "Towards an autonomous multistate biomolecular devices built on DNA". W 2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC). IEEE, 2014. http://dx.doi.org/10.1109/nabic.2014.6921899.
Pełny tekst źródłaYao, Baoli, Dalun Xu i Xun Hou. "Oriented bacteriorhodopsin film biomolecular devices and their photoelectric dynamics". W 22nd Int'l Congress on High-Speed Photography and Photonics, redaktorzy Dennis L. Paisley i ALan M. Frank. SPIE, 1997. http://dx.doi.org/10.1117/12.273484.
Pełny tekst źródłaTosolini, Giordano, Francesc Perez-Murano, Joan Bausells i Luis Guillermo Villanueva. "Self sensing cantilevers for the measurement of (biomolecular) forces". W 2011 Spanish Conference on Electron Devices (CDE). IEEE, 2011. http://dx.doi.org/10.1109/sced.2011.5744171.
Pełny tekst źródłaRaporty organizacyjne na temat "Biomolecular Devices"
Lundgren, Cynthia A., David Baker, Barry Bruce, Maggie Hurley, Amy K. Manocchi, Scott Pendley i James Sumner. Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy Conversion Devices (a.k.a. Understanding Photosystem I as a Biomolecular Reactor for Energy Conversion). Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2014. http://dx.doi.org/10.21236/ada601589.
Pełny tekst źródłaZhao, Yan. Mesoporous silica nanoparticles as smart and safe devices for regulating blood biomolecule levels. Office of Scientific and Technical Information (OSTI), styczeń 2011. http://dx.doi.org/10.2172/1029552.
Pełny tekst źródła