Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Biomoleculaire.

Artykuły w czasopismach na temat „Biomoleculaire”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Biomoleculaire”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Tongzhou Wang, Tongzhou Wang, Liping Xie Liping Xie, Haley Huang Haley Huang, Xin Li Xin Li, Ruliang Wang Ruliang Wang, Guang Yang Guang Yang, Yanan Du Yanan Du i Guoliang Huang Guoliang Huang. "Label-free biomolecular imaging using scanning spectral interferometry". Chinese Optics Letters 11, nr 11 (2013): 111102–5. http://dx.doi.org/10.3788/col201311.111102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sainz de Murieta, Inaki, Jesus M. Miro-Bueno i Alfonso Rodriguez-Paton. "Biomolecular Computers". Current Bioinformatics 6, nr 2 (1.06.2011): 173–84. http://dx.doi.org/10.2174/1574893611106020173.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

OZAWA, Takeaki. "Biomolecular Science". TRENDS IN THE SCIENCES 16, nr 5 (2011): 53–57. http://dx.doi.org/10.5363/tits.16.5_53.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

DOI, Junta. "Biomolecular Visualization". Journal of the Visualization Society of Japan 10, nr 39 (1990): 222–27. http://dx.doi.org/10.3154/jvs.10.222.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hulme, John P., Jihye Gwak i Yuji Miyahara. "Biomolecular Embossing". Journal of the American Chemical Society 128, nr 2 (styczeń 2006): 390–91. http://dx.doi.org/10.1021/ja055805r.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Brown, Keri A., i Terence A. Brown. "Biomolecular Archaeology". Annual Review of Anthropology 42, nr 1 (21.10.2013): 159–74. http://dx.doi.org/10.1146/annurev-anthro-092412-155455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

HILGARTNER, STEPHEN. "Biomolecular Databases". Science Communication 17, nr 2 (grudzień 1995): 240–63. http://dx.doi.org/10.1177/1075547095017002009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hemaspaandra, Lane A. "Biomolecular computing". ACM SIGACT News 30, nr 2 (czerwiec 1999): 22–30. http://dx.doi.org/10.1145/568547.568557.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hess, Henry, i George D. Bachand. "Biomolecular motors". Materials Today 8, nr 12 (grudzień 2005): 22–29. http://dx.doi.org/10.1016/s1369-7021(05)71286-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Koehler, M., i S. Diekmann. "Biomolecular nanotechnology". Reviews in Molecular Biotechnology 82, nr 1 (listopad 2001): 1–2. http://dx.doi.org/10.1016/s1389-0352(01)00031-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

TIRRELL, JANE G., MAURILLE J. FOURNIER, THOMAS L. MASON i DAVID A. TIRREL. "Biomolecular Materials". Chemical & Engineering News 72, nr 51 (19.12.1994): 40–51. http://dx.doi.org/10.1021/cen-v072n051.p040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Yamamura, Masayuki, Tom Head i Masami Hagiya. "Biomolecular computing". New Generation Computing 20, nr 3 (wrzesień 2002): 215–16. http://dx.doi.org/10.1007/bf03037356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Mantsch, H. "Biomolecular spectroscopy". TrAC Trends in Analytical Chemistry 13, nr 8 (wrzesień 1994): 338–39. http://dx.doi.org/10.1016/0165-9936(94)87007-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Mantsch, H. H. "Biomolecular spectroscopy". TrAC Trends in Analytical Chemistry 13, nr 6 (czerwiec 1994): xi—xii. http://dx.doi.org/10.1016/0165-9936(94)87053-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Mason, Stephen. "Biomolecular homochirality". Chemical Society Reviews 17 (1988): 347. http://dx.doi.org/10.1039/cs9881700347.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Mason, Stephen F. "Biomolecular handedness". Biochemical Pharmacology 37, nr 1 (styczeń 1988): 1–7. http://dx.doi.org/10.1016/0006-2952(88)90748-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Middelberg, Anton. "Biomolecular Engineering". Chemical Engineering Science 61, nr 3 (luty 2006): 875. http://dx.doi.org/10.1016/j.ces.2005.08.035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Hoff, A. J. "Biomolecular spectroscopy". Spectrochimica Acta Part A: Molecular Spectroscopy 50, nr 2 (luty 1994): 379–80. http://dx.doi.org/10.1016/0584-8539(94)80069-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Miró, Jesús M., i Alfonso Rodríguez-Patón. "Biomolecular Computing Devices in Synthetic Biology". International Journal of Nanotechnology and Molecular Computation 2, nr 2 (kwiecień 2010): 47–64. http://dx.doi.org/10.4018/978-1-59904-996-0.ch014.

Pełny tekst źródła
Streszczenie:
Synthetic biology and biomolecular computation are disciplines that fuse when it comes to designing and building information processing devices. In this chapter, we study several devices that are representative of this fusion. These are three gene circuits implementing logic gates, a DNA nanodevice and a biomolecular automaton. The operation of these devices is based on gene expression regulation, the so-called competitive hybridization and the workings of certain biomolecules like restriction enzymes or regulatory proteins. Synthetic biology, biomolecular computation, systems biology and standard molecular biology concepts are also defined to give a better understanding of the chapter. The aim is to acquaint readers with these biomolecular devices born of the marriage between synthetic biology and biomolecular computation.
Style APA, Harvard, Vancouver, ISO itp.
20

Raković, D., M. Dugić, M. B. Plavšić, G. Keković, Irena Ćosić i David Davidović. "Quantum Decoherence and Quantum-Holographic Information Processes: From Biomolecules to Biosystems". Materials Science Forum 518 (lipiec 2006): 485–90. http://dx.doi.org/10.4028/www.scientific.net/msf.518.485.

Pełny tekst źródła
Streszczenie:
Our recently proposed quantum approach to biomolecular recognition processes is hereby additionally supported by biomolecular Resonant Recognition Model and by quantum-chemical theory of biomolecular non-radiative resonant transitions. Previously developed general quantumdecoherence framework for biopolymer conformational changes in very selective ligandproteins/ target-receptors key/lock biomolecular recognition processes (with electron-conformational coupling, giving rise to dynamical modification of many-electron energy-state hypersurface of the cellular quantum-ensemble ligand-proteins/target-receptors biomolecular macroscopic quantum system, with revealed possibility to consider cellular biomolecular recognition as a Hopfield-like quantum-holographic associative neural network) is further extended from nonlocal macroscopicquantum level of biological cell to nonlocal macroscopic-quantum level of biological organism, based on long-range coherent microwave excitations (as supported by macroscopic quantum-like microwave resonance therapy of the acupuncture system) - which might be of fundamental importance in understanding of underlying macroscopic quantum (quantum-holographic Hopfieldlike) control mechanisms of embryogenesis/ontogenesis and morphogenesis, and their backward influence on the expression of genes.
Style APA, Harvard, Vancouver, ISO itp.
21

Ishihama, Yasushi, i Tatsuya Higashi. "“Biomolecular Mass Spectrometry”". Analytical Sciences 34, nr 9 (10.09.2018): 989. http://dx.doi.org/10.2116/analsci.ge1809.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Bollinger, Terry. "Biomolecular Quantum Computation". Terry's Archive Online 2020, nr 10 (22.10.2020): 1007. http://dx.doi.org/10.48034/20201007.

Pełny tekst źródła
Streszczenie:
In terms of leveraging the total power of quantum computing, the prevalent current (2020) model of designing quantum computation devices to follow the von Neuman model of abstraction is highly unlikely to be making full use of the full range of computational assistance possible at the atomic and molecular level. This is particularly the case for molecular modeling, in using computational models that more directly leverage the quantum effects of one set of molecules to estimate the behavior of some other set of molecules would remove the bottleneck of insisting that modeling first be converted to the virtual binary or digital format of quantum von Neuman machines. It is argued that even though this possibility of “fighting molecular quantum dynamics with molecular quantum dynamics” was recognized by early quantum computing founders such as Yuri Manin and Richard Feynman, the idea was quickly overlooked in favor of the more computer-compatible model that later developed into qubits and qubit processing.
Style APA, Harvard, Vancouver, ISO itp.
23

Mulholland, Adrian J. "Introduction. Biomolecular simulation". Journal of The Royal Society Interface 5, suppl_3 (30.09.2008): 169–72. http://dx.doi.org/10.1098/rsif.2008.0385.focus.

Pełny tekst źródła
Streszczenie:
‘Everything that living things do can be understood in terms of the jigglings and wigglings of atoms’ as Richard Feynman provocatively stated nearly 50 years ago. But how can we ‘see’ this wiggling and jiggling and understand how it drives biology? Increasingly, computer simulations of biological macromolecules are helping to meet this challenge.
Style APA, Harvard, Vancouver, ISO itp.
24

Olson, Arthur J. "Visualizing Biomolecular Interactions". Clinical Chemistry 37, nr 4 (1.04.1991): 607–8. http://dx.doi.org/10.1093/clinchem/37.4.607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Tang, Lei. "Artificial biomolecular condensates". Nature Methods 16, nr 1 (20.12.2018): 23. http://dx.doi.org/10.1038/s41592-018-0288-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Dunn, F. "Biomolecular ultrasound absorption". Journal of the Acoustical Society of America 81, S1 (maj 1987): S70—S71. http://dx.doi.org/10.1121/1.2024373.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Scolozzi, C. "PKD: Biomolecular Aspects". Giornale di Tecniche Nefrologiche e Dialitiche 24, nr 4 (październik 2012): 92–94. http://dx.doi.org/10.1177/039493621202400402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Bren, Kara L. "Engineered Biomolecular Catalysts". Journal of the American Chemical Society 139, nr 41 (4.10.2017): 14331–34. http://dx.doi.org/10.1021/jacs.7b09896.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Wolynes, P. G. "Computational biomolecular science". Proceedings of the National Academy of Sciences 95, nr 11 (26.05.1998): 5848. http://dx.doi.org/10.1073/pnas.95.11.5848.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Insana, Michael F., i Samuel A. Wickline. "Multimodality Biomolecular Imaging". Proceedings of the IEEE 96, nr 3 (marzec 2008): 378–81. http://dx.doi.org/10.1109/jproc.2007.913497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Listinsky, Jay J. "Biomolecular NMR Spectroscopy". Radiology 204, nr 1 (lipiec 1997): 100. http://dx.doi.org/10.1148/radiology.204.1.100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Novotny, Milos V. "Capillary biomolecular separations". Journal of Chromatography B: Biomedical Sciences and Applications 689, nr 1 (luty 1997): 55–70. http://dx.doi.org/10.1016/s0378-4347(96)00398-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Gabdoulline, Razif R., i Rebecca C. Wade. "Biomolecular diffusional association". Current Opinion in Structural Biology 12, nr 2 (kwiecień 2002): 204–13. http://dx.doi.org/10.1016/s0959-440x(02)00311-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Knowles, Peter. "Biomolecular NMR spectroscopy". Biochemical Education 24, nr 1 (styczeń 1996): 67. http://dx.doi.org/10.1016/s0307-4412(96)80024-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Bencsáth, Márta, Aladár Blaskovits i János Borvendég. "Biomolecular cytokine therapy". Pathology & Oncology Research 9, nr 1 (marzec 2003): 24–29. http://dx.doi.org/10.1007/bf03033710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Stockley, Peter G. "Biomolecular interaction analysis". Trends in Biotechnology 14, nr 2 (luty 1996): 39–41. http://dx.doi.org/10.1016/0167-7799(96)80916-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Wilson, W. D. "Analyzing Biomolecular Interactions". Science 295, nr 5562 (15.03.2002): 2103–5. http://dx.doi.org/10.1126/science.295.5562.2103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Plant, Anne L., Christopher S. Chen, Jay T. Groves i Atul N. Parikh. "The Biomolecular Interface". Langmuir 19, nr 5 (marzec 2003): 1449–50. http://dx.doi.org/10.1021/la034035z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Urry, Dan W. "Elastic Biomolecular Machines". Scientific American 272, nr 1 (styczeń 1995): 64–69. http://dx.doi.org/10.1038/scientificamerican0195-64.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Wemmer, David. "SnapShot: Biomolecular NMR". Cell 166, nr 6 (wrzesień 2016): 1600. http://dx.doi.org/10.1016/j.cell.2016.08.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Malmqvist, Magnus, i Russ Granzow. "Biomolecular Interaction Analysis". Methods 6, nr 2 (czerwiec 1994): 95–98. http://dx.doi.org/10.1006/meth.1994.1012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Cook, Julia L. "Internet Biomolecular Resources". Analytical Biochemistry 268, nr 2 (marzec 1999): 165–72. http://dx.doi.org/10.1006/abio.1998.3088.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Li, Xiaoran, Zhenni Chen, Haimin Zhang, Yan Zhuang, He Shen, Yanyan Chen, Yannan Zhao, Bing Chen, Zhifeng Xiao i Jianwu Dai. "Aligned Scaffolds with Biomolecular Gradients for Regenerative Medicine". Polymers 11, nr 2 (15.02.2019): 341. http://dx.doi.org/10.3390/polym11020341.

Pełny tekst źródła
Streszczenie:
Aligned topography and biomolecular gradients exist in various native tissues and play pivotal roles in a set of biological processes. Scaffolds that recapitulate the complex structure and microenvironment show great potential in promoting tissue regeneration and repair. We begin with a discussion on the fabrication of aligned scaffolds, followed by how biomolecular gradients can be immobilized on aligned scaffolds. In particular, we emphasize how electrospinning, freeze drying, and 3D printing technology can accomplish aligned topography and biomolecular gradients flexibly and robustly. We then highlight several applications of aligned scaffolds and biomolecular gradients in regenerative medicine including nerve, tendon/ligament, and tendon/ligament-to-bone insertion regeneration. Finally, we finish with conclusions and future perspectives on the use of aligned scaffolds with biomolecular gradients in regenerative medicine.
Style APA, Harvard, Vancouver, ISO itp.
44

Dey, D., i T. Goswami. "Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication". Journal of Biomedicine and Biotechnology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/348218.

Pełny tekst źródła
Streszczenie:
The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.
Style APA, Harvard, Vancouver, ISO itp.
45

Winter, Roland. "Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation". Annual Review of Biophysics 48, nr 1 (6.05.2019): 441–63. http://dx.doi.org/10.1146/annurev-biophys-052118-115601.

Pełny tekst źródła
Streszczenie:
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
Style APA, Harvard, Vancouver, ISO itp.
46

Montagner, Suelen, i Adilson Costa. "Bases biomoleculares do fotoenvelhecimento". Anais Brasileiros de Dermatologia 84, nr 3 (lipiec 2009): 263–69. http://dx.doi.org/10.1590/s0365-05962009000300008.

Pełny tekst źródła
Streszczenie:
Com o aumento da expectativa de vida, o estudo do processo de envelhecimento orgânico tem sido estimulado. O envelhecimento da pele, órgão que espelha os sinais do tempo, é processo de deterioração progressiva, tempo-dependente, e pode ser intensificado pela exposição solar, então designado fotoenvelhecimento. O dano das radiações sobre diversas estruturas celulares e cutâneas leva a alterações morfológicas nesses componentes, fruto de modificações biomoleculares. Muitas pesquisas são desenvolvidas com o intuito de combater ou minimizar os efeitos do fotoenvelhecimento, porém a principal estratégia nesse sentido continua sendo a prevenção, só conseguida pelo progressivo desvendar dos mecanismos fisiopatogênicos envolvidos nesse processo.
Style APA, Harvard, Vancouver, ISO itp.
47

Liang, Peigang, Jiaqi Zhang i Bo Wang. "Emerging Roles of Ubiquitination in Biomolecular Condensates". Cells 12, nr 18 (21.09.2023): 2329. http://dx.doi.org/10.3390/cells12182329.

Pełny tekst źródła
Streszczenie:
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process. Here, we summarize the regulatory roles of ubiquitination (a major form of cellular PTM) in the dynamics of biomolecular condensates. We propose that these regulatory mechanisms can be harnessed to combat many diseases.
Style APA, Harvard, Vancouver, ISO itp.
48

Mogaki, Rina, P. K. Hashim, Kou Okuro i Takuzo Aida. "Guanidinium-based “molecular glues” for modulation of biomolecular functions". Chem. Soc. Rev. 46, nr 21 (2017): 6480–91. http://dx.doi.org/10.1039/c7cs00647k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Keković, G., D. Raković i David Davidović. "Relevance of Polaron/Soliton-Like Transport Mechanisms in Cascade Resonant Isomeric Transitions of Q1D-Molecular Chains". Materials Science Forum 555 (wrzesień 2007): 119–24. http://dx.doi.org/10.4028/www.scientific.net/msf.555.119.

Pełny tekst źródła
Streszczenie:
Our recently proposed quantum approach to biomolecular isomeric-conformational changes and recognition processes, additionally supported by biomolecular resonant recognition model and by quantum-chemical theory of biomolecular non-radiative resonant transitions, is hereby extended to cascade resonant transitions via close intermediate participating isomeric states - which might be related to polaron/soliton-like energy and charge transport mechanisms in Q1Dmolecular chains, whose relevance is explored in this paper.
Style APA, Harvard, Vancouver, ISO itp.
50

Gawthrop, Peter J., i Edmund J. Crampin. "Energy-based analysis of biomolecular pathways". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, nr 2202 (czerwiec 2017): 20160825. http://dx.doi.org/10.1098/rspa.2016.0825.

Pełny tekst źródła
Streszczenie:
Decomposition of biomolecular reaction networks into pathways is a powerful approach to the analysis of metabolic and signalling networks. Current approaches based on analysis of the stoichiometric matrix reveal information about steady-state mass flows (reaction rates) through the network. In this work, we show how pathway analysis of biomolecular networks can be extended using an energy-based approach to provide information about energy flows through the network. This energy-based approach is developed using the engineering-inspired bond graph methodology to represent biomolecular reaction networks. The approach is introduced using glycolysis as an exemplar; and is then applied to analyse the efficiency of free energy transduction in a biomolecular cycle model of a transporter protein [sodium-glucose transport protein 1 (SGLT1)]. The overall aim of our work is to present a framework for modelling and analysis of biomolecular reactions and processes which considers energy flows and losses as well as mass transport.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii