Artykuły w czasopismach na temat „Biomineralisation”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Biomineralisation.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Biomineralisation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Estrela-Liopis, V. R., i A. F. Popova. "«Biomineralisation» Experiment Microalga biomineralisation under microgravity". Kosmìčna nauka ì tehnologìâ 6, nr 4 (30.07.2000): 118. http://dx.doi.org/10.15407/knit2000.04.130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Heidenreich, E., F. Kirschhöfer, N. Hintz, B. Kühl, A. Dötsch i G. Brenner-Weiß. "Zellfreie Biomineralisation: Charakterisierung molekularer Komponenten der Biomineralisation mittels Biotyping von Coccolithophoriden". Chemie Ingenieur Technik 88, nr 9 (29.08.2016): 1405–6. http://dx.doi.org/10.1002/cite.201650304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sand, K. K., C. S. Pedersen, J. Matthiesen, S. Dobberschütz i S. L. S. Stipp. "Controlling biomineralisation with cations". Nanoscale 9, nr 35 (2017): 12925–33. http://dx.doi.org/10.1039/c7nr02424j.

Pełny tekst źródła
Streszczenie:
The production of polymers for controlling calcite growth is a well-known approach in biomineralising organisms. However, little is known about the on/off switch that controls the formation of their intricate mineral forms. We demonstrate that interactions between cations and a polymer can regulate how the polymers interact with calcite.
Style APA, Harvard, Vancouver, ISO itp.
4

Gröger, Christian, Katharina Lutz i Eike Brunner. "NMR studies of biomineralisation". Progress in Nuclear Magnetic Resonance Spectroscopy 54, nr 1 (styczeń 2009): 54–68. http://dx.doi.org/10.1016/j.pnmrs.2008.02.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Young, Jeremy R., Sean A. Davis, Paul R. Bown i Stephen Mann. "Coccolith Ultrastructure and Biomineralisation". Journal of Structural Biology 126, nr 3 (czerwiec 1999): 195–215. http://dx.doi.org/10.1006/jsbi.1999.4132.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Young, J. R., M. Geisen, I. Probert i K. Henriksen. "Holococcolith and nannolith biomineralisation." Journal of Nannoplankton Research 26, nr 2 (2004): 114–15. http://dx.doi.org/10.58998/jnr2298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Phoenix, Vernon R., Dave G. Adams i Kurt O. Konhauser. "Cyanobacterial viability during hydrothermal biomineralisation". Chemical Geology 169, nr 3-4 (wrzesień 2000): 329–38. http://dx.doi.org/10.1016/s0009-2541(00)00212-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mukkamala, Saratchandra Babu, Christopher E. Anson i Annie K. Powell. "Modelling calcium carbonate biomineralisation processes". Journal of Inorganic Biochemistry 100, nr 5-6 (maj 2006): 1128–38. http://dx.doi.org/10.1016/j.jinorgbio.2006.02.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Konhauser, Kurt O. "Bacterial iron biomineralisation in nature". FEMS Microbiology Reviews 20, nr 3-4 (lipiec 1997): 315–26. http://dx.doi.org/10.1111/j.1574-6976.1997.tb00317.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Walsh, Pamela, Kathryn Fee, Susan Clarke, Matthew Julius i Fraser Buchanan. "Blueprints for the Next Generation of Bioinspired and Biomimetic Mineralised Composites for Bone Regeneration". Marine Drugs 16, nr 8 (20.08.2018): 288. http://dx.doi.org/10.3390/md16080288.

Pełny tekst źródła
Streszczenie:
Coccolithophores are unicellular marine phytoplankton, which produce intricate, tightly regulated, exoskeleton calcite structures. The formation of biogenic calcite occurs either intracellularly, forming ‘wheel-like’ calcite plates, or extracellularly, forming ‘tiled-like’ plates known as coccoliths. Secreted coccoliths then self-assemble into multiple layers to form the coccosphere, creating a protective wall around the organism. The cell wall hosts a variety of unique species-specific inorganic morphologies that cannot be replicated synthetically. Although biomineralisation has been extensively studied, it is still not fully understood. It is becoming more apparent that biologically controlled mineralisation is still an elusive goal. A key question to address is how nature goes from basic building blocks to the ultrafine, highly organised structures found in coccolithophores. A better understanding of coccolithophore biomineralisation will offer new insight into biomimetic and bioinspired synthesis of advanced, functionalised materials for bone tissue regeneration. The purpose of this review is to spark new interest in biomineralisation and gain new insight into coccolithophores from a material science perspective, drawing on existing knowledge from taxonomists, geologists, palaeontologists and phycologists.
Style APA, Harvard, Vancouver, ISO itp.
11

Simkiss, K. "Biomineralisation in the context of geological time". Earth and Environmental Science Transactions of the Royal Society of Edinburgh 80, nr 3-4 (1989): 193–99. http://dx.doi.org/10.1017/s0263593300028637.

Pełny tekst źródła
Streszczenie:
ABSTRACTThe basic properties of living systems are remarkably consistent and involve energy interactions between intracellular and extracellular environments. These interactions predispose living systems to deposit minerals from many solutions. The evolution of biomineralisation was not a single cellular invention but rather the association and perfection of a few of these fundamental properties of cell biology. The components of biomineralisation systems involve some mechanism for modifying the activity of at least one ion, an interface for initiating and possibly controlling crystal growth, a diffusion limited size and a mechanism for manipulating the growth of the crystal lattice. The evolution of these components of biomineralisation in the context of geological time inevitably concentrates on the Precambrian–Cambrian boundary. Over a time scale of less than 50 × 106 years there was a proliferation of metazoan phyla, the mineralisation in a large number of taxa and the exploitation of a diverse set of processes involving agglutinated sediments, silica, phosphates and carbonates. A large number of theories have been proposed to explain why biomineralisation occurred at this particular time. Such theories should recognise the importance of the incorporation of the citric acid cycle into the cellular metabolism of many organisms and its exploitation in an aerobic environment, the development of multicellularity which enormously increased the opportunities for modifying ion activities in diffusion-limited sites, and the exploitation of browsing and carnivorous feeding habits. These influences had major effects on ecosystems and population structures and put considerable selective pressure on the advantages that could be gained from a skeleton.
Style APA, Harvard, Vancouver, ISO itp.
12

Rutter, Gil O., Aaron H. Brown, David Quigley, Tiffany R. Walsh i Michael P. Allen. "Testing the transferability of a coarse-grained model to intrinsically disordered proteins". Physical Chemistry Chemical Physics 17, nr 47 (2015): 31741–49. http://dx.doi.org/10.1039/c5cp05652g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Bain, Jennifer, i Sarah S. Staniland. "Bioinspired nanoreactors for the biomineralisation of metallic-based nanoparticles for nanomedicine". Physical Chemistry Chemical Physics 17, nr 24 (2015): 15508–21. http://dx.doi.org/10.1039/c5cp00375j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Bird, S. M., O. El-Zubir, A. E. Rawlings, G. J. Leggett i S. S. Staniland. "A novel design strategy for nanoparticles on nanopatterns: interferometric lithographic patterning of Mms6 biotemplated magnetic nanoparticles". Journal of Materials Chemistry C 4, nr 18 (2016): 3948–55. http://dx.doi.org/10.1039/c5tc03895b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Begum, Gousia, W. Brandon Goodwin, Ben M. deGlee, Kenneth H. Sandhage i Nils Kröger. "Compartmentalisation of enzymes for cascade reactions through biomimetic layer-by-layer mineralization". Journal of Materials Chemistry B 3, nr 26 (2015): 5232–40. http://dx.doi.org/10.1039/c5tb00333d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Bras, Ana, Hazha Mohammed, Abbie Romano i Ismini Nakouti. "Biomineralisation to Increase Earth Infrastructure Resilience". Materials 15, nr 7 (28.03.2022): 2490. http://dx.doi.org/10.3390/ma15072490.

Pełny tekst źródła
Streszczenie:
The vulnerability of buildings and structures to rain and flooding due to a lack of adaptive capacity is an issue all over the world. Exploring the bio-resources availability and engineering performance is crucial to increase infrastructure’s resilience. The current study analyses earth-based mortars using mineral precipitation as a biostabiliser (bio) and compares their performance with cement-based mortars. Cultures of S. oneidensis with a concentration of 2.3 × 108 cfu/mL were used to prepare earth-based and cement-based mortars with a ratio of 6% of binder. Microstructure analyses through SEM/EDS, water absorption, moisture buffering, mechanical strength, and porosity are discussed. The biostabiliser decreases water absorption in tidal-splash and saturated environments for earth and cement mortars due to calcium carbonate precipitation. The biostabiliser can prevent water migration more effectively for the cement-based (60% reduction) than for the earth-based mortars (up to 10% reduction) in the first 1 h of contact with water. In an adsorption/desorption environment, the conditions favour desorption in cem+bio, and it seems that the biostabiliser precipitation facilitates the release of the chemicals into the mobile phase. The precipitation in the earth+bio mortar porous media conditions favours the adsorption of water molecules, making the molecule adhere to the stationary phase and be separated from the other sample chemicals. The SEM/EDS performed for the mortars confirms the calcium carbonate precipitation and shows that there is a decrease in the quantity of Si and K if the biostabiliser is used in cement and earth-mortars. This decrease, associated with the ability of S. oneidensis to leach silica, is more impressive for earth+bio, which might be associated with a dissolution of silicate structures due to the presence of more water. For the tested earth-based mortars, there was an increase of 10% for compressive and flexural strength if the biostabiliser was added. For the cement-based mortars, the strength increase was almost double that of the plain one due to the clay surface negative charge in the earth-based compositions.
Style APA, Harvard, Vancouver, ISO itp.
17

Addadi, Lia, i Stephen Weiner. "Kontroll- und Designprinzipien bei der Biomineralisation". Angewandte Chemie 104, nr 2 (luty 1992): 159–76. http://dx.doi.org/10.1002/ange.19921040206.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Nudelman, Fabio, i Nico A. J. M. Sommerdijk. "Biomineralisation als Inspirationsquelle für die Materialchemie". Angewandte Chemie 124, nr 27 (25.05.2012): 6686–700. http://dx.doi.org/10.1002/ange.201106715.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Wolf, Stefan L. P., Kathrin Jähme i Denis Gebauer. "Synergy of Mg2+ and poly(aspartic acid) in additive-controlled calcium carbonate precipitation". CrystEngComm 17, nr 36 (2015): 6857–62. http://dx.doi.org/10.1039/c5ce00452g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Šupová, Monika. "The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat—Protein Template Constructs". Materials 13, nr 2 (10.01.2020): 327. http://dx.doi.org/10.3390/ma13020327.

Pełny tekst źródła
Streszczenie:
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate—protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
Style APA, Harvard, Vancouver, ISO itp.
21

Tanaka, M., Y. Takahashi, L. Roach, K. Critchley, S. D. Evans i M. Okochi. "Rational screening of biomineralisation peptides for colour-selected one-pot gold nanoparticle syntheses". Nanoscale Advances 1, nr 1 (2019): 71–75. http://dx.doi.org/10.1039/c8na00075a.

Pełny tekst źródła
Streszczenie:
Biomineralisation peptides that facilitate the one-pot synthesis of gold nanoparticles (AuNPs) with selected optical properties, were screened using a coherent peptide-spotted array consisting of a AuNP binding peptide library.
Style APA, Harvard, Vancouver, ISO itp.
22

Bird, Scott M., Johanna M. Galloway, Andrea E. Rawlings, Jonathan P. Bramble i Sarah S. Staniland. "Taking a hard line with biotemplating: cobalt-doped magnetite magnetic nanoparticle arrays". Nanoscale 7, nr 16 (2015): 7340–51. http://dx.doi.org/10.1039/c5nr00651a.

Pełny tekst źródła
Streszczenie:
A cysteine-mutated biomineralisation protein (Mms6) patterned onto gold biotemplates magnetic nanoparticle arrays of magnetite and higher coercivity cobalt-doped magnetite. This demonstrates an adaptable, green approach for the future of nanofabrication.
Style APA, Harvard, Vancouver, ISO itp.
23

Bird, Scott M., Andrea E. Rawlings, Johanna M. Galloway i Sarah S. Staniland. "Using a biomimetic membrane surface experiment to investigate the activity of the magnetite biomineralisation protein Mms6". RSC Advances 6, nr 9 (2016): 7356–63. http://dx.doi.org/10.1039/c5ra16469a.

Pełny tekst źródła
Streszczenie:
Using a surface-based mimic of a magnetosome interior, the biomineralisation protein Mms6 was found to be a more effective nucleator than binder of magnetite nanoparticles, and performs better than its C-terminal region alone.
Style APA, Harvard, Vancouver, ISO itp.
24

Leng, Yirong, i Ana Soares. "Understanding the mechanisms of biological struvite biomineralisation". Chemosphere 281 (październik 2021): 130986. http://dx.doi.org/10.1016/j.chemosphere.2021.130986.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Beyhum, W., D. Hautot, J. Dobson i Q. A. Pankhurst. "Magnetic biomineralisation in Huntington's disease transgenic mice". Journal of Physics: Conference Series 17 (1.01.2005): 50–53. http://dx.doi.org/10.1088/1742-6596/17/1/008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Meldrum, F. C. "Calcium carbonate in biomineralisation and biomimetic chemistry". International Materials Reviews 48, nr 3 (czerwiec 2003): 187–224. http://dx.doi.org/10.1179/095066003225005836.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Pérez-Huerta, A., M. Cusack, S. McDonald, F. Marone, M. Stampanoni i S. MacKay. "Brachiopod punctae: A complexity in shell biomineralisation". Journal of Structural Biology 167, nr 1 (lipiec 2009): 62–67. http://dx.doi.org/10.1016/j.jsb.2009.03.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Tampieri, A., M. Sandri, E. Landi, S. Sprio, F. Valentini i A. Boskey. "Synthetic biomineralisation yielding HA/collagen hybrid composite". Advances in Applied Ceramics 107, nr 5 (październik 2008): 298–302. http://dx.doi.org/10.1179/174367608x314163.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Henriksen, K., J. R. Young, P. R. Bown i S. L. S. Stipp. "Coccolith biomineralisation studied with atomic force microscopy". Palaeontology 47, nr 3 (maj 2004): 725–43. http://dx.doi.org/10.1111/j.0031-0239.2004.00385.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Mann, Stephen. "Biomineralisation: Ein neuer Zweig der bioanorganischen Chemie". Chemie in unserer Zeit 20, nr 3 (czerwiec 1986): 69–76. http://dx.doi.org/10.1002/ciuz.19860200302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Escobar, Sindy, Susana Velasco-Lozano, Chih-Hao Lu, Yu-Feng Lin, Monica Mesa, Claudia Bernal i Fernando López-Gallego. "Understanding the functional properties of bio-inorganic nanoflowers as biocatalysts by deciphering the metal-binding sites of enzymes". Journal of Materials Chemistry B 5, nr 23 (2017): 4478–86. http://dx.doi.org/10.1039/c6tb03295h.

Pełny tekst źródła
Streszczenie:
The biomineralisation of metal phosphates is a promising approach to develop more efficient nanobiocatalysts; elucidating which protein regions most likely participate in the mineral formation will guide the fabrication of more efficient biocatalysts based on metal-phosphate nanoflowers.
Style APA, Harvard, Vancouver, ISO itp.
32

Méndez, J., J. B. Rodríguez, R. Álvarez-Otero, M. J. I. Briones i L. Gago-Duport. "Ultrastructure of the earthworm calciferous gland. A preliminary study". Microscopy and Microanalysis 15, S3 (lipiec 2009): 25–26. http://dx.doi.org/10.1017/s1431927609990584.

Pełny tekst źródła
Streszczenie:
AbstractThe earthworm species belonging to the Lumbricidae family (Annelida, Oligochaeta) posses a complex oesophageal organ known as “calciferous gland” which secretes a concentrated suspension of calcium carbonate. Previous studies have demonstrated the non-crystalline structure of this calcareous fluid representing an interesting example of biomineralisation.
Style APA, Harvard, Vancouver, ISO itp.
33

Mustaffa, Musliana. "The use of bioceramic root canal sealers for obturation of the root canal system: A review". IIUM Journal of Orofacial and Health Sciences 2, nr 1 (28.02.2021): 14–25. http://dx.doi.org/10.31436/ijohs.v2i1.55.

Pełny tekst źródła
Streszczenie:
The use of bioceramic root canal sealers in endodontics is a promising approach because of the advantages such as improved flow properties, biocompatible and could promote the formation of hard tissue. Due to the recent technology and limited scientific evidence, the effectiveness of bioceramic root canal sealers remains unclear. This article focuses on the physicochemical properties, biocompatibility, biomineralisation, retreatability, 3D obturation and current practice of using bioceramic root canal sealers. The relevant articles for this review were searched manually from Google Scholar and PubMed using keywords ‘bioceramic root filling material AND endodontics’, ‘bioceramic root canal sealers AND endodontics’, ‘cytotoxicity AND bioceramic root canal sealers’, ‘bioceramic root canal sealers AND physicochemical properties’, ‘biomineralisation AND bioceramic root canal sealers’ and ‘retreatment efficacy AND bioceramic root filling materials’. Since the clinical data concerning the obturation with bioceramic root canal sealers is lacking, the selection of materials should be made based on the available scientific evidence, individual cases, material availability and operator’s preference.
Style APA, Harvard, Vancouver, ISO itp.
34

Stipp, S. L. S., T. Hassenkam, K. Sand, M. Yang, N. Bovet, L. Schultz i K. E. Henriksen. "In search of Nature's secrets – controls on biomineralisation". Acta Crystallographica Section A Foundations of Crystallography 67, a1 (22.08.2011): C47. http://dx.doi.org/10.1107/s0108767311098928.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Chang, Veronica T. C., R. J. P. Williams, Akio Makishima, Nick S. Belshawl i R. Keith O’Nions. "Mg and Ca isotope fractionation during CaCO3 biomineralisation". Biochemical and Biophysical Research Communications 323, nr 1 (październik 2004): 79–85. http://dx.doi.org/10.1016/j.bbrc.2004.08.053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Retana-Lobo, Cristina, Juliane Maria Guerreiro-Tanomaru, Mario Tanomaru-Filho, Beatriz Dulcineia Mendes de Souza i Jessie Reyes-Carmona. "Non-Collagenous Dentin Protein Binding Sites Control Mineral Formation during the Biomineralisation Process in Radicular Dentin". Materials 13, nr 5 (27.02.2020): 1053. http://dx.doi.org/10.3390/ma13051053.

Pełny tekst źródła
Streszczenie:
The biomineralisation of radicular dentin involves complex molecular signalling. Providing evidence of protein binding sites for calcium ions and mineral precipitation is essential for a better understanding of the remineralisation process. This study aimed to evaluate the functional relationship of metalloproteinases (MMPs) and non-collagenous proteins (NCPs) with mineral initiation and maturation during the biomineralisation of radicular dentin. A standardized demineralisation procedure was performed to radicular dentin slices. Samples were remineralised in a PBS-bioactive material system for different periods of time. Assessments of ion exchange, Raman analysis, and energy dispersive X-ray analysis (EDAX) with a scanning electron microscope (SEM) were used to evaluate the remineralisation process. Immunohistochemistry and zymography were performed to analyse NCPs and MMPs expression. SEM evaluation showed that the mineral nucleation and growth occurs, exclusively, on the demineralised radicular dentin surface. Raman analysis of remineralised dentin showed intense peaks at 955 and 1063 cm−1, which can be attributed to carbonate apatite formation. Immunohistochemistry of demineralised samples revealed the presence of DMP1-CT, mainly in intratubular dentin, whereas DSPP in intratubular and intertubular dentin. DMP1-CT and DSPP binding sites control carbonate apatite nucleation and maturation guiding the remineralisation of radicular dentin.
Style APA, Harvard, Vancouver, ISO itp.
37

McFadden, A., B. Gillanders, A. Pring i B. Wade. "Otolith Biomineralisation: Insights From a Microstructural and Microanalytical Study". Microscopy and Microanalysis 20, S3 (sierpień 2014): 1320–21. http://dx.doi.org/10.1017/s1431927614008332.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Rajendran, Archana, i Deepak K. Pattanayak. "Mechanistic studies of biomineralisation on silver incorporated anatase TiO2". Materials Science and Engineering: C 109 (kwiecień 2020): 110558. http://dx.doi.org/10.1016/j.msec.2019.110558.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wong, Kim KW, i Stephen Mann. "Small-scale structures in biomineralisation and biomimetic materials chemistry". Current Opinion in Colloid & Interface Science 3, nr 1 (luty 1998): 63–68. http://dx.doi.org/10.1016/s1359-0294(98)80043-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Szabó, Réka, Angus C. Calder i David E. K. Ferrier. "Biomineralisation during operculum regeneration in the polychaete Spirobranchus lamarcki". Marine Biology 161, nr 11 (14.09.2014): 2621–29. http://dx.doi.org/10.1007/s00227-014-2534-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Gopal, Judy, P. Muraleedharan, H. Sarvamangala, R. P. George, R. K. Dayal, B. V. R. Tata, H. S. Khatak i K. A. Natarajan. "Biomineralisation of manganese on titanium surfaces exposed to seawater". Biofouling 24, nr 4 (27.06.2008): 275–82. http://dx.doi.org/10.1080/08927010802056467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Hagen, Karl S. "Modellverbindungen für die Eisen-Sauerstoff-Aggregation und die Biomineralisation". Angewandte Chemie 104, nr 8 (sierpień 1992): 1036–38. http://dx.doi.org/10.1002/ange.19921040809.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Sumper, Manfred, i Eike Brunner. "Silica Biomineralisation in Diatoms: The Model Organism Thalassiosira pseudonana". ChemBioChem 9, nr 8 (23.05.2008): 1187–94. http://dx.doi.org/10.1002/cbic.200700764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Krampitz, Gottfried, i Gabriele Graser. "Molekulare Mechanismen der Biomineralisation bei der Bildung von Kalkschalen". Angewandte Chemie 100, nr 9 (wrzesień 1988): 1181–93. http://dx.doi.org/10.1002/ange.19881000906.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Faivre, Damien, i Tina Ukmar Godec. "Bakterien und Weichtiere: Prinzipien der Biomineralisation von Eisenoxid-Materialien". Angewandte Chemie 127, nr 16 (7.04.2015): 4810–29. http://dx.doi.org/10.1002/ange.201408900.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Dissanayake, Shama S. M., Manikandan Ekambaram, Kai Chun Li, Paul W. R. Harris i Margaret A. Brimble. "Identification of Key Functional Motifs of Native Amelogenin Protein for Dental Enamel Remineralisation". Molecules 25, nr 18 (14.09.2020): 4214. http://dx.doi.org/10.3390/molecules25184214.

Pełny tekst źródła
Streszczenie:
Dental caries or tooth decay is a preventable and multifactorial disease that affects billions of people globally and is a particular concern in younger populations. This decay arises from acid demineralisation of tooth enamel resulting in mineral loss from the subsurface. The remineralisation of early enamel carious lesions could prevent the cavitation of teeth. The enamel protein amelogenin constitutes 90% of the total enamel matrix protein in teeth and plays a key role in the biomineralisation of tooth enamel. The physiological importance of amelogenin has led to the investigation of the possible development of amelogenin-derived biomimetics against dental caries. We herein review the literature on amelogenin, its primary and secondary structure, comparison to related species, and its’ in vivo processing to bioactive peptide fragments. The key structural motifs of amelogenin that enable enamel remineralisation are discussed. The presence of several motifs in the amelogenin structure (such as polyproline, N- and C-terminal domains and C-terminal orientation) were shown to play a critical role in the formation of particle shape during remineralization. Understanding the function/structure relationships of amelogenin can aid in the rational design of synthetic polypeptides for biomineralisation, halting enamel loss and leading to improved therapies for tooth decay.
Style APA, Harvard, Vancouver, ISO itp.
47

Chen, Xihai, Hongxian Guo i Xiaohui Cheng. "Heavy metal immobilisation and particle cementation of tailings by biomineralisation". Environmental Geotechnics 5, nr 2 (kwiecień 2018): 107–13. http://dx.doi.org/10.1680/jenge.15.00068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Sethmann, Ingo, Uta Helbig i Gert Wörheide. "Octocoral sclerite ultrastructures and experimental approach to underlying biomineralisation principles". CrystEngComm 9, nr 12 (2007): 1262. http://dx.doi.org/10.1039/b711068e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Yang, Y. L., Z. Y. Yang, D. Y. Dong, N. B. Dahotre, K. Liu, Y. X. Liu i J. J. Niu. "Wettability and biomineralisation of laser cladded Si doped TiCN biocoating". Materials Science and Technology 31, nr 12 (18.11.2014): 1417–24. http://dx.doi.org/10.1179/1743284714y.0000000717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Hufton, Joseph, John H. Harding i Maria E. Romero-González. "The role of extracellular DNA in uranium precipitation and biomineralisation". Physical Chemistry Chemical Physics 18, nr 42 (2016): 29101–12. http://dx.doi.org/10.1039/c6cp03239g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii