Gotowa bibliografia na temat „BIOMEDICAL INSTRUMENT”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „BIOMEDICAL INSTRUMENT”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "BIOMEDICAL INSTRUMENT"
Broer, Klaas H. "Instrument evaluation in biomedical sciences". TrAC Trends in Analytical Chemistry 5, nr 4 (kwiecień 1986): xxii. http://dx.doi.org/10.1016/0165-9936(86)80052-8.
Pełny tekst źródłaLi, Zheng Jeremy. "Mathematical Modeling and Computational Simulation of a New Biomedical Instrument Design". ISRN Biomathematics 2012 (10.12.2012): 1–5. http://dx.doi.org/10.5402/2012/256741.
Pełny tekst źródłaHeibeyn, Jan, Nils König, Nadine Domnik, Matthias Schweizer, Max Kinzius, Armin Janß i Klaus Radermacher. "Design and Evaluation of a Novel Instrument Gripper for Handling of Surgical Instruments". Current Directions in Biomedical Engineering 7, nr 1 (1.08.2021): 1–5. http://dx.doi.org/10.1515/cdbme-2021-1001.
Pełny tekst źródłaWagner, Lars, Lukas Bernhard, Jonas Fuchtmann, Mert Asim Karaoglu, Alexander Ladikos, Hubertus Feußner i Dirk Wilhelm. "Integrating 3D cameras into sterile surgical environments: A comparison of different protective materials regarding scan accuracy". Current Directions in Biomedical Engineering 8, nr 1 (1.07.2022): 25–29. http://dx.doi.org/10.1515/cdbme-2022-0007.
Pełny tekst źródłaMuralidhar, Deutschland, Shiva Sirasala, Venkata Jammalamadaka, Moritz Spiller, Thomas Sühn, Alfredo Illanes, Axel Boese i Michael Friebe. "Collaborative Robot as Scrub Nurse". Current Directions in Biomedical Engineering 7, nr 1 (1.08.2021): 162–65. http://dx.doi.org/10.1515/cdbme-2021-1035.
Pełny tekst źródłaBachmann, Ada L., Giuliano A. Giacoppo i Peter P. Pott. "Work space analysis of a new instrument for Natural Orifice Transluminal Endoscopic Surgery (NOTES)". Current Directions in Biomedical Engineering 8, nr 2 (1.08.2022): 301–4. http://dx.doi.org/10.1515/cdbme-2022-1077.
Pełny tekst źródłaLebedev, Andrei D., Maria A. Ivanova, Aleksey V. Lomakin i Valentine A. Noskin. "Heterodyne quasi-elastic light-scattering instrument for biomedical diagnostics". Applied Optics 36, nr 30 (20.10.1997): 7518. http://dx.doi.org/10.1364/ao.36.007518.
Pełny tekst źródłaVujović, Stefan, Andjela Draganić, Maja Lakičević Žarić, Irena Orović, Miloš Daković, Marko Beko i Srdjan Stanković. "Sparse Analyzer Tool for Biomedical Signals". Sensors 20, nr 9 (2.05.2020): 2602. http://dx.doi.org/10.3390/s20092602.
Pełny tekst źródłaZhuang, Ziyun, i Ho Pui Ho. "Application of digital micromirror devices (DMD) in biomedical instruments". Journal of Innovative Optical Health Sciences 13, nr 06 (5.08.2020): 2030011. http://dx.doi.org/10.1142/s1793545820300116.
Pełny tekst źródłaShadgan, Babak, W. Darlene Reid, Reza Gharakhanlou, Lynn Stpublisher-ids i Andrew John Macnab. "Wireless near-infrared spectroscopy of skeletal muscle oxygenation and hemodynamics during exercise and ischemia". Spectroscopy 23, nr 5-6 (2009): 233–41. http://dx.doi.org/10.1155/2009/719604.
Pełny tekst źródłaRozprawy doktorskie na temat "BIOMEDICAL INSTRUMENT"
Ahmed, Mohamed E. "PORTABLE MEDICAL INSTRUMENT FOR OBJECTIVELY DIAGNOSING HUMAN TINNITUS". OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/165.
Pełny tekst źródłaMares, David M. "Developmental laboratories for biomedical instrumentation and digital signal processing with virtual instrument technology and diverse software techniques". Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1292461511&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Pełny tekst źródłaLomas, Martin. "The development of high performance scanning probe microscopes for biomedical applications". Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298050.
Pełny tekst źródłaLarsson, Marcus. "Influence of optical properties on Laser Doppler Flowmetry /". Linköping : Univ, 2004. http://www.bibl.liu.se/liupubl/disp/disp2004/tek914s.pdf.
Pełny tekst źródłaTweedie, Richard John. "Conception, design and development of the Impulse Response Impedance Spectroscopy instrument". Thesis, University of Dundee, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242447.
Pełny tekst źródłaYao, Hsin-Yun 1974. "Touch magnifying instrument applied to minimally invasive surgery". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81578.
Pełny tekst źródłaWilliams, Robin Bede. "An instrument for the measurement of body/support interface stresses : with particular application to below-knee prostheses". Thesis, King's College London (University of London), 1993. https://kclpure.kcl.ac.uk/portal/en/theses/an-instrument-for-the-measurement-of-bodysupport-interface-stresses--with-particular-application-to-belowknee-prostheses(75e24619-efdb-4d71-bd55-2080cf733aea).html.
Pełny tekst źródłaSmith, Heather D. "Designing an Instrument Based nn Native Fluorescence to Determine Soil Microbial Content at a Mars Analog Site". DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/614.
Pełny tekst źródłaSaez, Miguel Angel. "Micro-forging technique for rapid, low-cost manufacture of lens array molds and its application in a biomedical instrument". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40478.
Pełny tekst źródłaIncludes bibliographical references (leaves 46-48).
Interest in micro-optical components for applications ranging from telecommunications to the life sciences has driven the need for accessible, low-cost fabrication techniques. Most micro-lens fabrication processes are unsuitable for applications requiring 100% fill factor, apertures around 1 mm, and scalability to large areas with millions of lenses. A flexible, low-cost mold fabrication technique that utilizes a combination of milling and micro-forging is reported. The technique involves first performing a rough cut with a ball-end mill. Final shape and sag height are then achieved by pressing a sphere of equal diameter into the milled divot. Using this process, molds were fabricated for rectangular arrays of 1-10,000 lenses with apertures of 0.25-1.6 mm, sag heights of 3-130 [mu]m, inter-lens spacings of 0.25-2 mm, and fill factors of 0-100%. Mold profiles have roughness and figure error of 68 nm and 354 nm, respectively, for 100% fill factor, 1 mm aperture square lenses. The required forging force was modeled as a modified open-die forging process and experimentally verified to increase nearly linearly with surface area.
(cont.) The optical performance of lens arrays injection molded from micro-forged molds was characterized by imaging the point spread function, and was found to be in the range of theoretical values. Limitations include milling machine range and accuracy. Application to biological fluorescence detection in a biomedical device is also reported.
by Miguel Angel Saez.
S.B.
Bonilla, Guerrero Jader Alfredo. "Jämförelse av natrium-resultat mellan patientnära instrument (GEM Premier 5000) och central laboratoriet instrument (Advia Chemistry XPT) på Universitetssjukhus Örebro. Finns det signifikant skillnad?" Thesis, Örebro universitet, Institutionen för hälsovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-92908.
Pełny tekst źródłaBackground: Sodium (Na +) is an important electrolyte in the body, and is analyzed, among other things, to be able to assess the patient's condition in the intensive care unit (IVA) and to determine if emergency treatment is necessary. The analysis of Na + on IVA is done with the help of GEM Premier 5000, which is a patient-centered instrument and uses a direct method for analysis of whole blood. For patient sample comparison, the sample is sent to the central laboratory where the plasma is analyzed by indirect method on Advia Chemistry XPT. Deviation between the methods must not exceed 3%, otherwise the cause must be investigated. Aim: The aim of the study is to investigate whether there is a systematic difference in Sodium results between patient-related instruments, Gem Premier 5000 and the central laboratory's instrument, Advia Chemistry XPT in different patient groups. Method: Measurement was performed on blood samples taken in Lithium Heparin tubes of 60 participants, of which 30 were healthy blood donors (group 1) and the remaining 30 consisted of inpatients (IVA) and kidney dialysis patients, (group 2). The samples were analyzed for sodium on GEM Premier 5000 and shortly thereafter for sodium, albumin, total protein, C-reactive protein (CRP), glucose and triglycerides on Advia Chemistry XPT. Results: Advia Chemistry XPT gave a higher concentration of Na + (139 mmol / L) than GEM Premier 5000 (138 mmol / L) for all participants. The percentage difference of Na between the methods differed for 3 participants in group 1 while it differed for half of the participants in group 2. Conclusion: Na + results on Advia Chemistry XPT were higher than on GEM Premier 5000 for all participants. The difference was greater in patients with a high degree of morbidity. This suggests that the current acceptable deviation of 3% should be increased to 5%, in order to reduce the number of deviating values to almost the same for both groups. This must be taken into account and implemented in the business.
Książki na temat "BIOMEDICAL INSTRUMENT"
1932-, Webster John G., red. Bioinstrumentation. Hoboken, N.J: John Wiley & Sons, 2004.
Znajdź pełny tekst źródłaChow, Chan Chung, red. Analytical method validation and instrument performance verification. Hoboken, N.J: Wiley-Interscience, 2004.
Znajdź pełny tekst źródłaTogawa, Tatsuo. Biomedical sensors and instruments. Wyd. 2. Boca Raton: CRC Press, 2011.
Znajdź pełny tekst źródłaToshiyo, Tamura, i Öberg P. Åke, red. Biomedical transducers and instruments. Boca Raton: CRC Press, 1997.
Znajdź pełny tekst źródłaWelkowitz, Walter. Biomedical instruments: Theory and design. Wyd. 2. San Diego: Academic Press, 1992.
Znajdź pełny tekst źródła1918-, Deutsch Sid, i Akay Metin, red. Biomedical instruments: Theory and design. Wyd. 2. San Diego: Academic Press, 1992.
Znajdź pełny tekst źródłaC, Dorf Richard, red. Sensors, nanoscience, biomedical engineering and instruments. Boca Raton: CRC/Taylor & Francis, 2005.
Znajdź pełny tekst źródła1975-, Singh Rahul, i Lee Hua, red. Biomedical devices and technology. Hoboken, N.J: Wiley, 2012.
Znajdź pełny tekst źródłaUtah. Business Expansion & Retention., red. Utah biomedical industry directory. Salt Lake City, UT (324 S. State, Salt Lake City 84114-7355): State of Utah, Division of Business & Economic Development, Business Expansion & Retention, 1993.
Znajdź pełny tekst źródłaM, Verga Scheggi A., red. Biomedical optical instrumentation and laser-assisted biotechnology. Boston: Kluwer Academic, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "BIOMEDICAL INSTRUMENT"
Kügler, David, Martin Andrade Jastrzebski i Anirban Mukhopadhyay. "Instrument Pose Estimation Using Registration for Otobasis Surgery". W Biomedical Image Registration, 105–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92258-4_10.
Pełny tekst źródłaOthman, Wan Zulkarnain, Mohamad Redhwan Abd Aziz, Nor Hana Mamat i Ahmad Fikri Ramli. "Development of Cutting Force Measurement Instrument for Turning Tool Post Using Arduino UNO". W Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics, 239–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6926-9_21.
Pełny tekst źródłaDennis, Cindi L. "Magnetic Characterization: Instruments and Methods". W Biomedical Applications of Magnetic Particles, 83–120. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781315117058-5.
Pełny tekst źródłaDubra, Alfredo, i Zachary Harvey. "Registration of 2D Images from Fast Scanning Ophthalmic Instruments". W Biomedical Image Registration, 60–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14366-3_6.
Pełny tekst źródłaFriedman, Charles P., Jeremy C. Wyatt i Joan S. Ash. "Designing Measurement Processes and Instruments". W Evaluation Methods in Biomedical and Health Informatics, 177–203. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86453-8_9.
Pełny tekst źródłaOlivier Fernandez, Jean Raphaël, i César Briso Rodríguez. "Gbps Data Transmission in Biomedical and Communications Instruments". W 4G Wireless Communication Networks, 427–40. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003357247-20.
Pełny tekst źródłaNarang, Mahak, Ankit Gambhir i Mandeep Singh. "Harnessing Energy for Implantable Biomedical Instruments with IoT Networks". W Energy Harvesting, 105–16. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003218760-5.
Pełny tekst źródłaGupta, Meena, i Dinesh Bhatia. "Retrain the Brain Through Noninvasive Medically Acclaimed Instruments". W Application of Biomedical Engineering in Neuroscience, 51–60. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7142-4_3.
Pełny tekst źródłaDewanjee, Mrinal K. "Principles of Measurement of Radioiodinated Tracers and Related Instruments". W Radioiodination: Theory, Practice, and Biomedical Applications, 19–25. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3508-9_3.
Pełny tekst źródłaSantos, João P., João P. Ferreira, Manuel Crisóstomo i A. Paulo Coimbra. "Instrumented Shoes for 3D GRF Analysis and Characterization of Human Gait". W Bioinformatics and Biomedical Engineering, 51–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17935-9_6.
Pełny tekst źródłaStreszczenia konferencji na temat "BIOMEDICAL INSTRUMENT"
Burns, S. "A biomedical instrument development center". W IEE Seminar on Appropriate Medical Technology for Developing Countries. IEE, 2002. http://dx.doi.org/10.1049/ic:20020046.
Pełny tekst źródłaLiu, Ning, Yang Yu, Angelo Sassaroli i Sergio Fantini. "Spectral Imaging Instrument for Optical Mammography". W Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.bmd42.
Pełny tekst źródłaMirbagheri, Alireza, Mobin Yahyazadehfar i Farzam Farahmand. "Conceptual Design of a Novel Laparoscopic Instrument for Manipulation of Large Internal Organs". W ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32012.
Pełny tekst źródłaDubnack, S., R. Rützler, M. Wiechmann, J. Hinz i P. Amend. "New instrument solutions for Photodynamic Therapy". W Biomedical Topical Meeting. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/bio.1999.ctub5.
Pełny tekst źródłaSato, Rika, Norihiko Saga, Naoki Saito i Seiji Chonan. "Development of a Rehabilitation Instrument for Prevent Contracture of Ankle". W ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38061.
Pełny tekst źródłaEmir, Uzay, Ahmet Ademoglu, Cengizhan Ozturk, Kubilay Aydin, Tamer Demiralp, Adnan Kurt, Alp Dincer i Ata Akin. "Design of an MR-compatible fNIRS instrument". W Biomedical Optics 2005, redaktorzy Kenneth E. Bartels, Lawrence S. Bass, Werner T. W. de Riese, Kenton W. Gregory, Henry Hirschberg, Abraham Katzir, Nikiforos Kollias i in. SPIE, 2005. http://dx.doi.org/10.1117/12.590710.
Pełny tekst źródłaTahani, Nada, Shayaan Hussain, Kunta Nithya Sri i Vijaya Gunturu. "Enhancement of a Biomedical Instrument using Machine Learning". W 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS). IEEE, 2023. http://dx.doi.org/10.1109/icscss57650.2023.10169625.
Pełny tekst źródłaNieman, Linda T., Alexey Myakov, Konstantin Sokolov i Rebecca Richards-Kortum. "Polarized reflectance spectroscopy instrument for the clinical setting". W Biomedical Topical Meeting. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/bio.2002.wb1.
Pełny tekst źródłaJelÍnková, Helena, Michal Němec, Jan Šulc, Pavel Černý, Mitsunobu Miyagi, Yi-Wei Shi i Yuji Matsuura. "Delivery system for laser medical instrument". W European Conference on Biomedical Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ecbo.2003.5143_300.
Pełny tekst źródłaStockford, Ian M., Stephen P. Morgan, John A. Crowe i John G. Walker. "A polarized light imaging instrument for characterizing skin lesions". W Biomedical Optics 2004, redaktorzy Robert R. Alfano i Alvin Katz. SPIE, 2004. http://dx.doi.org/10.1117/12.529030.
Pełny tekst źródła