Gotowa bibliografia na temat „Biomedical Device Fabrication”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biomedical Device Fabrication”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biomedical Device Fabrication"
Shin, Yoo-Kyum, Yujin Shin, Jung Woo Lee i Min-Ho Seo. "Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications". Biosensors 12, nr 11 (1.11.2022): 952. http://dx.doi.org/10.3390/bios12110952.
Pełny tekst źródłaBais, Ashish Singh, Lokendra Singh Chouhan i Joseph Thomas Andrews. "All Optical Integrated MOEMS Optical Coherence Tomography System". Journal of Physics: Conference Series 2426, nr 1 (1.02.2023): 012024. http://dx.doi.org/10.1088/1742-6596/2426/1/012024.
Pełny tekst źródłaDey, D., i T. Goswami. "Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication". Journal of Biomedicine and Biotechnology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/348218.
Pełny tekst źródłaGiorleo, L., E. Ceretti i C. Giardini. "Optimization of laser micromachining process for biomedical device fabrication". International Journal of Advanced Manufacturing Technology 82, nr 5-8 (27.06.2015): 901–7. http://dx.doi.org/10.1007/s00170-015-7450-2.
Pełny tekst źródłaLi, Qiushi, Zhaoduo Tong i Hongju Mao. "Microfluidic Based Organ-on-Chips and Biomedical Application". Biosensors 13, nr 4 (29.03.2023): 436. http://dx.doi.org/10.3390/bios13040436.
Pełny tekst źródłaGarcia-Rey, Sandra, Jacob B. Nielsen, Gregory P. Nordin, Adam T. Woolley, Lourdes Basabe-Desmonts i Fernando Benito-Lopez. "High-Resolution 3D Printing Fabrication of a Microfluidic Platform for Blood Plasma Separation". Polymers 14, nr 13 (22.06.2022): 2537. http://dx.doi.org/10.3390/polym14132537.
Pełny tekst źródłaWu, Zhen-Lin, Ya-Nan Qi, Xiao-Jie Yin, Xin Yang, Chang-Ming Chen, Jing-Ying Yu, Jia-Chen Yu i in. "Polymer-Based Device Fabrication and Applications Using Direct Laser Writing Technology". Polymers 11, nr 3 (22.03.2019): 553. http://dx.doi.org/10.3390/polym11030553.
Pełny tekst źródłaButkutė, Agnė, Tomas Jurkšas, Tomas Baravykas, Bettina Leber, Greta Merkininkaitė, Rugilė Žilėnaitė, Deividas Čereška i in. "Combined Femtosecond Laser Glass Microprocessing for Liver-on-Chip Device Fabrication". Materials 16, nr 6 (8.03.2023): 2174. http://dx.doi.org/10.3390/ma16062174.
Pełny tekst źródłaElvira, Katherine S., Fabrice Gielen, Scott S. H. Tsai i Adrian M. Nightingale. "Materials and methods for droplet microfluidic device fabrication". Lab on a Chip 22, nr 5 (2022): 859–75. http://dx.doi.org/10.1039/d1lc00836f.
Pełny tekst źródłaPerumal, Veeradasan, U. Hashim i Tijjani Adam. "Mask Design and Simulation: Computer Aided Design for Lab-on-Chip Application". Advanced Materials Research 832 (listopad 2013): 84–88. http://dx.doi.org/10.4028/www.scientific.net/amr.832.84.
Pełny tekst źródłaRozprawy doktorskie na temat "Biomedical Device Fabrication"
Chopra, Pooja. "Fabrication of Multi-Parallel Microfluidic Devices for Investigating MechanicalProperties of Cancer Cells". Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1466594229.
Pełny tekst źródłaUng, Ryan. "The Design, Fabrication, and Testing of a Point of Care Device for Diagnosing Sickle Cell Disease and Other Hemoglobin Disorders". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459188452.
Pełny tekst źródłaShah, Pratikkumar. "Development of a Lab-on-a-Chip Device for Rapid Nanotoxicity Assessment In Vitro". FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1834.
Pełny tekst źródłaKong, Tiantian, i 孔湉湉. "Microfluidic fabrication of polymer-based microparticles for biomedical applications". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196008.
Pełny tekst źródłapublished_or_final_version
Mechanical Engineering
Doctoral
Doctor of Philosophy
PIGNATELLI, CATALDO. "Fabrication of biomedical devices through electro-fluid-dynamic-based techniques". Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929355.
Pełny tekst źródłaMukerjee, Erik Vivek. "Design, fabrication and testing of silicon microneedle-based microfabricated biomedical devices /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Pełny tekst źródłaFerrell, Nicholas Jay. "Polymer Microelectromechanical Systems: Fabrication and Applications in Biology and Biological Force Measurements". Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1204824627.
Pełny tekst źródłaLeon, Errol Heradio. "Design and Fabrication Techniques of Devices for Embedded Power Active Contact Lens". DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1387.
Pełny tekst źródłaVasudev, Abhay. "Electrochemical Immunosensing of Cortisol in an Automated Microfluidic System Towards Point-of-Care Applications". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/956.
Pełny tekst źródłaBattistelli, Elisa. "Microfluidic microbial fuel cell fabrication and rapid screening of electrochemically microbes". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7301/.
Pełny tekst źródłaKsiążki na temat "Biomedical Device Fabrication"
Ito, Yoshihiro. Photochemistry for Biomedical Applications: From Device Fabrication to Diagnosis and Therapy. Springer, 2018.
Znajdź pełny tekst źródłaIto, Yoshihiro. Photochemistry for Biomedical Applications: From Device Fabrication to Diagnosis and Therapy. Springer, 2018.
Znajdź pełny tekst źródłaPhotochemistry for Biomedical Applications: From Device Fabrication to Diagnosis and Therapy. Springer, 2018.
Znajdź pełny tekst źródłaAlarcon, Emilio I., May Griffith i Klas I. Udekwu. Silver Nanoparticle Applications: In the Fabrication and Design of Medical and Biosensing Devices. Springer, 2016.
Znajdź pełny tekst źródłaAlarcon, Emilio I., May Griffith i Klas I. Udekwu. Silver Nanoparticle Applications: In the Fabrication and Design of Medical and Biosensing Devices. Springer, 2015.
Znajdź pełny tekst źródłaAlarcon, Emilio I., May Griffith i Klas I. Udekwu. Silver Nanoparticle Applications: In the Fabrication and Design of Medical and Biosensing Devices. Springer International Publishing AG, 2015.
Znajdź pełny tekst źródłaFukuda, Toshio, Masahiro Nakajima, Masaru Takeuchi i Yasuhisa Hasegawa. Micro- and nanotechnology for living machines. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0052.
Pełny tekst źródłaPorous Silicon: Biomedical and Sensor Applications. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaOptical MEMS for Chemical Analysis and Biomedicine. Institution of Engineering & Technology, 2016.
Znajdź pełny tekst źródłaOptical MEMS for Chemical Analysis and Biomedicine. Institution of Engineering & Technology, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Biomedical Device Fabrication"
Srivastava, Rohit, i Jayeeta Chattopadhyay. "Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications". W Advanced Nanomaterials in Biomedical, Sensor and Energy Applications, 1–14. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5346-7_1.
Pełny tekst źródłaMohmad, Salina bt, C. F. Chau, T. Melvin, S. Atri i C. Kaminski. "Nano-porous Polysilicon Fabrication for Micro Electro Mechanical System (MEMS) Drug Delivery Device". W 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, 329–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68017-8_84.
Pełny tekst źródłaSalih, N. M., M. Z. Sahdan, M. Morsin i M. T. Asmah. "Fabrication and Integration of PDMS-Glass Based Microfluidic with Optical Absorbance Measurement Device for Coliform Bacteria Detection". W 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6), 75–81. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4361-1_13.
Pełny tekst źródłaLascano, Sheila, i Danilo Estay. "Biomedical Devices: Materials, Fabrication and Control". W Intelligent Systems, Control and Automation: Science and Engineering, 195–219. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-40003-7_9.
Pełny tekst źródłaSarma, Upasana, Pranjal Chandra i Shrikrishna N. Joshi. "Advanced Microchannel Fabrication Technologies for Biomedical Devices". W Advanced Micro- and Nano-manufacturing Technologies, 127–43. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3645-5_6.
Pełny tekst źródłaHuber, T. E., S. Johnson, K. A. Shirvani, Q. Barclif, T. Brower, A. Nikolaeva i L. Konopko. "Fabrication of Bismuth Telluride Wire Thermoelectric Devices". W 3rd International Conference on Nanotechnologies and Biomedical Engineering, 97–100. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-736-9_23.
Pełny tekst źródłaHoriuchi, Toshiyuki, Shinpei Yoshino i Jyo Miyanishi. "Simple Fabrication Method of Micro-Fluidic Devices with Thick Resist Flow Paths Designed Arbitrarily Using Versatile Computer Aided Design Tools". W Biomedical Engineering Systems and Technologies, 19–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26129-4_2.
Pełny tekst źródłaPadha, B. "Fabrication Approaches for Piezoelectric Materials". W Materials Research Foundations, 37–60. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644902097-2.
Pełny tekst źródłaPadha, B. "Fabrication Approaches for Piezoelectric Materials". W Materials Research Foundations, 37–60. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644902073-2.
Pełny tekst źródłaBag, Monojit, Jitendra Kumar i Ramesh Kumar. "Graphene-based Nanocomposites for Electro-optic Devices". W Current and Future Developments in Nanomaterials and Carbon Nanotubes, 190–204. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050714122030014.
Pełny tekst źródłaStreszczenia konferencji na temat "Biomedical Device Fabrication"
Kumar, G. Naga Siva, Sushanta K. Mitra i V. Ramgopal Rao. "Fabrication of Dielectrophoretic Microfluidic Device". W ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82170.
Pełny tekst źródłaChoi, Jeongkeun, Bumkyoo Choi i Hoyoung Lee. "Fabrication and experiment of the hemodialysis unit device". W 2013 6th Biomedical Engineering International Conference (BMEiCON). IEEE, 2013. http://dx.doi.org/10.1109/bmeicon.2013.6687647.
Pełny tekst źródłaSalehipour, Saeed, Nabiollah Abolfathi i Ataallah Hashemi. "Design and fabrication of cell adhesion measuring device". W 2014 21th Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2014. http://dx.doi.org/10.1109/icbme.2014.7043943.
Pełny tekst źródłaHeller, Michael J., Dieter Dehlinger, Sadik Esener i Benjamin Sullivan. "Electric Field Directed Fabrication of Biosensor Devices From Biomolecule Derivatized Nanoparticles". W ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38093.
Pełny tekst źródłaYan, Karen Chang, John Sperduto, Michael Rossini i Michael Sebok. "Multi-Layer Construction Process for Fabricating Electrospun Fiber Embedded Microfluidic Devices". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52086.
Pełny tekst źródłaRavi, Prashanth, Panos S. Shiakolas, Jacob C. Oberg, Shahid Faizee i Ankit K. Batra. "On the Development of a Modular 3D Bioprinter for Research in Biomedical Device Fabrication". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51555.
Pełny tekst źródłaMoita, A. S., F. Jacinto i A. L. N. Moreira. "Design, Test and Fabrication of a Droplet based Microfluidic Device for Clinical Diagnostics". W 11th International Conference on Biomedical Electronics and Devices. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006656600880095.
Pełny tekst źródłaKomirisetty, Archana, Frances Williams, Aswini Pradhan i Meric Arslan. "Integrating Sensors With Nanostructures for Biomedical Applications". W ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93121.
Pełny tekst źródłaRen, Jing, i Sriram Sundararajan. "Microfluidic Channel Fabrication With Tailored Wall Roughness". W ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7328.
Pełny tekst źródłaDawoud, Abdulilah A. "Fabrication of Fully Integrated Microfluidic Device With Carbon Sensing Electrode for the Detection of Forensic and Biomedical Targets". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41454.
Pełny tekst źródła