Rozprawy doktorskie na temat „Biomedical applications of FBGs”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Biomedical applications of FBGs”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Child, Hannah. "Nanoparticles for biomedical applications". Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3583/.
Pełny tekst źródłaHughes-Brittain, Nanayaa Freda. "Photoembossing for biomedical applications". Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8294.
Pełny tekst źródłaAbbas, Aiman Omar Mahmoud. "Chitosan for biomedical applications". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/771.
Pełny tekst źródłaZomer, Volpato Fabio. "Composites for Biomedical Applications". Doctoral thesis, Università degli studi di Trento, 2010. https://hdl.handle.net/11572/368680.
Pełny tekst źródłaZomer, Volpato Fabio. "Composites for Biomedical Applications". Doctoral thesis, University of Trento, 2010. http://eprints-phd.biblio.unitn.it/334/1/PhD_Thesis_Zomer_Volpato%2C_Fabio.pdf.
Pełny tekst źródłaChin, Suk Fun. "Superparamagnetic nanoparticles for biomedical applications". University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0128.
Pełny tekst źródłaZurutuza, Amaia. "Novel microgels for biomedical applications". Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248836.
Pełny tekst źródłaCantini, Eleonora. "Switchable surfaces for biomedical applications". Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8040/.
Pełny tekst źródłaChristiansen, Michael G. (Michael Gary). "Magnetothermal multiplexing for biomedical applications". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111248.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 170-176).
Research on biomedical applications of magnetic nanoparticles (MNPs) has increasingly sought to demonstrate noninvasive actuation of cellular processes and material responses using heat dissipated in the presence of an alternating magnetic field (AMF). By modeling the dependence of hysteresis losses on AMF amplitude and constraining AMF conditions to be physiologically suitable, it can be shown that MNPs exhibit uniquely optimal driving conditions that depend on controllable material properties such as magnetic anisotropy, magnetization, and particle volume. "Magnetothermal multiplexing," which relies on selecting materials with substantially distinct optimal AMF conditions, enables the selective heating of different kinds of collocated MNPs by applying different AMF parameters. This effect has the potential to extend the functionality of a variety of emerging techniques with mechanisms that rely on bulk or nanoscale heating of MNPs. Experimental investigations on methods for actuating deep brain stimulation, drug release, and shape memory polymer response are summarized, with discussion of the feasibility and utility of applying magnetothermal multiplexing to similar systems. The possibility of selective heating is motivated by a discussion of various models for heat dissipation by MNPs in AMFs, and then corroborated with experimental calorimetry measurements. A heuristic method for identifying materials and AMF conditions suitable for multiplexing is demonstrated on a set of iron oxide nanoparticles doped with various concentrations of cobalt. Design principles for producing AMFs with high amplitude and ranging in frequency from 15kHz to 2.5MHz are explained in detail, accompanied by a discussion of the outlook for scalability to clinically relevant dimensions. The thesis concludes with a discussion of the state of the field and the broader lessons that can be drawn from the work it describes.
by Michael G. Christiansen.
Ph. D.
Degani, Ismail. "Biomedical applications of holographic microscopy". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118494.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 77-79).
Identifying patients with aggressive cancers is a major healthcare challenge in resource-limited settings such as sub-Saharan Africa. Holographic imaging techniques have been shown to perform diagnostic screening at low cost in order to meet this clinical need, however the computational and logistical challenges involved in deploying such systems are manifold. This thesis aims to make two specific contributions to the field of point-of-care diagnostics. First, it documents the design and construction of low-cost holographic imaging hardware which can serve as a template for future research and development. Second, it presents a novel deep-learning architecture that can potentially lower the computational burden of digital holography by replacing existing image reconstruction methods. We demonstrate the effectiveness of the algorithm by reconstructing biological samples and quantifying their structural similarity relative to spatial deconvolution methods. The approaches explored in this work could enable a standalone holographic platform that is capable of efficiently performing diagnostic screening at the point of care.
by Ismail Degani.
S.M. in Engineering and Management
Ge, Haifang. "Image processing for biomedical applications". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612506.
Pełny tekst źródłavan, Schaik Tempest. "Electrochemical sensors for biomedical applications". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/25054.
Pełny tekst źródłaMiftah, el kheir Laila. "Smart devices for biomedical applications". Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD054.
Pełny tekst źródłaSmart Devices have been widely used by health care and cosmetics professionals. Indeed, they helpin many aspects of clinical practice by providing an efficient way for medical diagnosis, supportingbetter clinical decision-making and improving patient outcomes. In this thesis, we have beeninterested in three applications. The first one is related to the wettability measurement, especially forthe human skin. So we propose, a held-hand device that is based on the contact angle measurementto determine skin wettability. Besides, the device allows the visualization of the liquid dropletspreading in both dynamic and static modes. Moreover, it can measure the top and the left views ofthe droplet and provides the 3D droplet and the skin explored area profiles. The second applicationpermits the skin radiance measurement. For this purpose, we propose a miniaturized device havingan original method for the BRDF measurement associated with 3D profile measurement of the areastudied. As regards the third application, it is a non-invasive method for breath measurement that usesa stereovision system and a pseudo-periodic pattern. This system allows a high-resolution threedimensionaldisplacement measurement for the recording of the thoracoabdominal wall respiratorymovement. The devices developed during this research gives us a high accuracy, a good resolutionand repeatability of measurements
Alamri, Saeed. "Implanted antennas for biomedical applications". Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/15884/.
Pełny tekst źródłaSimmonte, Owens Matthew John. "Polymer microarrays for biomedical applications". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28953.
Pełny tekst źródłaVenkateswaran, Seshasailam. "Biomedical applications of polymer microarrays". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28758.
Pełny tekst źródłaCabanach, Xifró Pol. "Zwitterionic materials for biomedical applications". Doctoral thesis, Universitat Ramon Llull, 2021. http://hdl.handle.net/10803/671831.
Pełny tekst źródłaLa respuesta de nuestro cuerpo a los biomateriales supone un gran obstáculo para la efectividad de múltiples terapias basadas en los biomateriales. Accionados por la absorción de biomoléculas en la superficie del material, barreras como el sistema inmune o las superficies mucosas eliminan los materiales del cuerpo, evitando que lleguen a su destino y realicen su función. Los materiales zwitteriónicos han emergido en los últimos años como materiales antiadherentes prometedores para superar las barreras mencionadas. Aunque muchos sistemas utilizan materiales zwitteriónicos como recubrimientos, sus propiedades únicas de superhidrofilicidad i versatilidad química sugieren múltiples beneficios en utilizarlos como material principal. Aquí, dos sistemas basados en materiales zwitteriónicos son presentados. En primer lugar, una plataforma para la liberación de fármaco antiadherente basada en copolímeros de bloque amfifílicos (CBA) es desarrollada. Los CBA zwitteriónicos son sintetizados y optimizados para que se auto-organicen en nanopartículas zwitteriónicas. Las propiedades antiadherentes de estas nanopartículas son probadas, al igual que su potencial para convertirse en un sistema oral de liberación de fármaco. Seguidamente, el sistema se utiliza como portador para fármacos animalarios y anticancerígenos. Las nanopartículas muestran internalización en eritrocitos infectados por Plasmodio, y nanopartículas cargadas con curcumina demuestran su eficacia contra la malaria in vitro. Se observa la absorción oral de polímero y curcumina in vivo utilizando un modelo de ratón, indicando el potencial del sistema para convertirse en una terapia oral contra malaria. Cuando se optimiza el sistema para la terapia contra el cáncer, las nanopartículas cargadas con Paclitaxel exhiben actividad anticancerígena en modelos in vitro de células cancerosas. En segundo lugar, microrobots zwitteriónicos no-inmunológicos que pueden evitar el reconocimiento por parte del sistema inmune son introducidos. Se desarrolla una fotoresisténcia zwitteriónica para la microimpresión de microrobots zwitteriónicos a través de la polimerización de dos fotones con una amplia funcionalización: propiedades mecánicas variables, anti-bioadhesión i propiedades no-inmunogénicas, funcionalización para la actuación magnética, encapsulación de biomoléculas i modificación superficial para la liberación de fármaco. Los robots invisibles evitan que los macrófagos del sistema inmune innato los detecten después de una inspección exhaustiva (de más de 90 horas), hecho que no se ha conseguido hasta la fecha por ningún sistema microrobótico. Estos materiales zwitteriónicos versátiles eliminan uno de los grandes obstáculos en el desarrollo de microrobots biocompatibles, y servirán como una caja de herramientas de materiales no-inmunogénicos para crear robots biomédicos y otros dispositivos para la bioingeniería y para las aplicaciones biomédicas.
Body response to biomaterials suppose a major roadblock for the effectiveness of multiple biomaterial-based therapies. Triggered by unspecific absorption of biomolecules in the material surface, barriers such as immune system or mucosal surfaces clear foreign materials from the body, preventing them to reach their target and perform their function. Zwitterionic materials have emerged in the last years as promising antifouling materials to overcome the mentioned barriers. Although many systems have used zwitterionic materials as coatings, the unique properties of superhydrophilicity and chemical versatility suggest multiple benefits of using zwitterionic polymers as bulk materials. Here, two different systems based on zwitterionic materials are presented. In first place, an antifouling drug delivery platform based on zwitterionic amphiphilic polymers (ABC) is developed. Zwitterionic ABCs are synthetized and optimized to self-assemble in zwitterionic nanoparticles. The antifouling properties of zwitterionic nanoparticles are proved, together with their potential to become an oral drug delivery system. Next, the system is used as a drug carrier for antimalarial and anticancer drugs. Nanoparticles show internalization in Plasmodium infected erythrocytes, and curcumin-loaded nanoparticles prove their antimalarial efficacy in vitro. Oral absorption of polymer and curcumin is also observed in vivo using mice model, indicating the potential of this system to become oral therapy against malaria. When optimizing the system for anticancer therapy, Paclitaxel-loaded nanoparticles exhibit anticancer activity in in vitro cancer cell models. Second, non‐immunogenic stealth zwitterionic microrobots that avoid recognition from immune cells are introduced. Zwitterionic photoresist are developed for the 3D microprinting of zwitterionic hydrogel microrobots through 2-photon polymerization with ample functionalization: tunable mechanical properties, anti-biofouling and non-immunogenic properties, functionalization for magnetic actuation, encapsulation of biomolecules, and surface functionalization for drug delivery. Stealth microrobots avoid detection by macrophage cells of the innate immune system after exhaustive inspection (> 90 h), which has not been achieved in any microrobotic platform to date. These versatile zwitterionic materials eliminate a major roadblock in the development of biocompatible microrobots, and will serve as a toolbox of non-immunogenic materials for medical microrobot and other device technologies for bioengineering and biomedical applications.
Cunliffe, Daniel Jonathan. "Biomedical applications of belief networks". Thesis, University of Edinburgh, 1996. http://hdl.handle.net/1842/30148.
Pełny tekst źródłaNikolayev, Denys. "Miniature antennas for biomedical applications". Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S149.
Pełny tekst źródłaEmerging wireless biotelemetry using miniature implantable, ingestible or injectable (in-body) devices allows continuously monitor and yield human or animal physiological parameters while maintaining mobility and quality of life. Recent advances in microelectromechanical systems and microfluidics—along with ongoing miniaturization of electronics—have empowered numerous innovations in biotelemetry devices, creating new applications in medicine, clinical research, wellness, and defense. Among the typical applications, I can mention, for example, the monitoring of physiological variables: body temperature, blood pressure, heart rate, detection of antibodies, chemical, or biological agents. Biotelemetry devices require a reliable communication system: robust, efficient, and versatile. Improving the transmission range of miniature in-body devices remains a major challenge: for the time being, they are able to operate only up to a few meters. Among the main issues to face are low radiation efficiencies (< 0.1%), antenna impedance detuning, and strong coupling to lossy and dispersive biological tissues. Thus, the main goal of the thesis is to conduct a multi-disciplinary study on development, optimization and characterization of antennas for in-body biotelemetry devices. After state-of-the-art and the context, I start with the development on both physical and numerical approaches to account for the effect of human tissues on the antenna. I propose the methodology to achieve given electromagnetic properties at a given frequency based on the full factorial experiment and surface response optimization. In addition, I describe the spherical physical phantom for the far-field characterization along with a combination of feed decoupling techniques. I proceed by reviewing the trough-body propagation mechanisms and deriving the optimal frequency for the in-body devices. I formulate the problem using four phantoms (homogeneous and heterogeneous) and perform full-wave analysis using an in-house hp-FEM code Agros 2D. Next, I study the existing antenna used by the BodyCap Company for its e-Celsius capsule and the ways on how to improve its operating range and robustness under strict integration and material constraints. The mechanisms of antenna–body coupling are analyzed and the found solution improves the antenna IEEE gain by 11 dBi (the operating range is at least tripled). The existing matching circuit and balun are optimized too for the given application reducing its size from eleven to seven discrete elements. In the following chapters, I continue studying the decoupling of antennas from a body using specific microstrip designs and dielectric loading via capsule shell. By applying the developed approaches, a high robustness and radiation efficiency can be achieved. At first, I develop a proof-of-concept antenna that demonstrates that the perfect matching (detuning immunity) is achievable for the operation within all human tissues. Based on these results, I develop a miniature and versatile biotelemetry platform: a 17 mm x 7 mm alumina capsule containing a conformal 434 MHz antenna. The antenna is well matched to 50 Ohm within the majority of human tissues and operates with an arbitrary device circuitry. Like this, one can use it ''as is,'' applying it for a wide range of in-body applications. Then, I develop a low profile conformal dual-band antenna operating in 434 MHz and 2.45 GHz bands. Such antenna can integrate both data transmission and wireless powering functionality increasing the available space inside an in-body device and increasing its scope of applications. Finally, I present the perspective developments including in-body sensing methodology. The obtained results contributes to further development of a new generation of miniature in-body devices that involve complex and dense integration of sensors, logic, and power sources
Lopes, Pedro Jorge Pereira. "Service composition for biomedical applications". Doctoral thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/10545.
Pełny tekst źródłaA exigente inovação na área das aplicações biomédicas tem guiado a evolução das tecnologias de informação nas últimas décadas. Os desafios associados a uma gestão, integração, análise e interpretação eficientes dos dados provenientes das mais modernas tecnologias de hardware e software requerem um esforço concertado. Desde hardware para sequenciação de genes a registos electrónicos de paciente, passando por pesquisa de fármacos, a possibilidade de explorar com precisão os dados destes ambientes é vital para a compreensão da saúde humana. Esta tese engloba a discussão e o desenvolvimento de melhores estratégias informáticas para ultrapassar estes desafios, principalmente no contexto da composição de serviços, incluindo técnicas flexíveis de integração de dados, como warehousing ou federação, e técnicas avançadas de interoperabilidade, como serviços web ou LinkedData. A composição de serviços é apresentada como um ideal genérico, direcionado para a integração de dados e para a interoperabilidade de software. Relativamente a esta última, esta investigação debruçou-se sobre o campo da farmacovigilância, no contexto do projeto Europeu EU-ADR. As contribuições para este projeto, um novo standard de interoperabilidade e um motor de execução de workflows, sustentam a sucesso da EU-ADR Web Platform, uma plataforma para realizar estudos avançados de farmacovigilância. No contexto do projeto Europeu GEN2PHEN, esta investigação visou ultrapassar os desafios associados à integração de dados distribuídos e heterogéneos no campo do varíoma humano. Foi criada uma nova solução, WAVe - Web Analyses of the Variome, que fornece uma coleção rica de dados de variação genética através de uma interface Web inovadora e de uma API avançada. O desenvolvimento destas estratégias evidenciou duas oportunidades claras na área de software biomédico: melhorar o processo de implementação de software através do recurso a técnicas de desenvolvimento rápidas e aperfeiçoar a qualidade e disponibilidade dos dados através da adopção do paradigma de web semântica. A plataforma COEUS atravessa as fronteiras de integração e interoperabilidade, fornecendo metodologias para a aquisição e tradução flexíveis de dados, bem como uma camada de serviços interoperáveis para explorar semanticamente os dados agregados. Combinando as técnicas de desenvolvimento rápidas com a riqueza da perspectiva "Semantic Web in a box", a plataforma COEUS é uma aproximação pioneira, permitindo o desenvolvimento da próxima geração de aplicações biomédicas.
The demand for innovation in the biomedical software domain has been an information technologies evolution driver over the last decades. The challenges associated with the effective management, integration, analyses and interpretation of the wealth of life sciences information stemming from modern hardware and software technologies require concerted efforts. From gene sequencing hardware to pharmacology research up to patient electronic health records, the ability to accurately explore data from these environments is vital to further improve our understanding of human health. This thesis encloses the discussion on building better informatics strategies to address these challenges, primarily in the context of service composition, including warehousing and federation strategies for resource integration, as well as web services or LinkedData for software interoperability. Service composition is introduced as a general principle, geared towards data integration and software interoperability. Concerning the latter, this research covers the service composition requirements within the pharmacovigilance field, namely on the European EU-ADR project. The contributions to this area, the definition of a new interoperability standard and the creation of a new workflow-wrapping engine, are behind the successful construction of the EUADR Web Platform, a workspace for delivering advanced pharmacovigilance studies. In the context of the European GEN2PHEN project, this research tackles the challenges associated with the integration of heterogeneous and distributed data in the human variome field. For this matter, a new lightweight solution was created: WAVe, Web Analysis of the Variome, provides a rich collection of genetic variation data through an innovative portal and an advanced API. The development of the strategies underlying these products highlighted clear opportunities in the biomedical software field: enhancing the software implementation process with rapid application development approaches and improving the quality and availability of data with the adoption of the Semantic Web paradigm. COEUS crosses the boundaries of integration and interoperability as it provides a framework for the flexible acquisition and translation of data into a semantic knowledge base, as well as a comprehensive set of interoperability services, from REST to LinkedData, to fully exploit gathered data semantically. By combining the lightness of rapid application development strategies with the richness of its "Semantic Web in a box" approach, COEUS is a pioneering framework to enhance the development of the next generation of biomedical applications.
Almeida, José Carlos Martins de. "Hybrid materials for biomedical applications". Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/15973.
Pełny tekst źródłaThe increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.
O aumento da longevidade dos seres humanos e a procura de uma melhor qualidade de vida têm conduzido a uma pesquisa contínua de novos materiais para implantes. O desenvolvimento científico, juntamente com uma crescente multidisciplinaridade entre as ciências dos materiais e as ciências da vida deram origem a novas abordagens, como a medicina regenerativa e a engenharia de tecidos. A busca de um material com propriedades mecânicas próximas das do osso humano produziu uma nova família de materiais híbridos que tiram partido da sinergia entre os domínios inorgânicos de sílica (SiO4), com base em composições de vidros bioativos obtidos por sol-gel, e os domínios orgânicos de polidimetilsiloxano, PDMS ((CH3)2.SiO2)n. Vários estudos têm demonstrado que os materiais híbridos baseados no sistema PDMS-SiO2 constituem um grupo de biomateriais promissores com várias aplicações potenciais tais como a regeneração de tecido ósseo e a recuperação do tecido cerebral, passando por revestimentos bioativos e sistemas de libertação controlada de fármacos. O objetivo do presente trabalho foi preparar materiais híbridos para aplicações biomédicas com base no sistema PDMS-SiO2 e contribuir para uma melhor compreensão das relações entre as condições de processamento sol-gel, as estruturas químicas, a microestrutura e as propriedades macroscópicas. Para alcançar tal objetivo, foram usadas diferentes técnicas de caracterização: espectroscopia de infravermelho por transformada de Fourier, ressonância magnética nuclear no estado sólido e no estado líquido, difração de raios-X, dispersão de raios-X de baixo ângulo, dispersão de neutrões de baixo ângulo, análise da área de superfície pelo método de Brunauer–Emmett–Teller, microscopia eletrónica de varrimento e microscopia eletrónica de transmissão. A rugosidade e a molhabilidade das superfícies foram analisadas por perfilometria óptica 3D e por medidas de ângulo de contacto, respectivamente. A bioatividade in vitro foi avaliada através de testes de imersão em plasma sintético e posterior observação da superfície dos materiais e análise do líquido sobrenadante por espectrometria de emissão atômica por plasma acoplado Indutivamente. A biocompatibilidade in vitro foi avaliada usando células osteoblásticas MG63. Materiais do sistema PDMS-SiO2-CaO foram inicialmente preparados usando o nitrato como fonte de cálcio. Para eliminar os resíduos de nitrato no produto final, devido à sua potencial toxicidade, é necessária uma etapa de tratamento térmico (acima dos 400° C). A fim de aumentar a estabilidade térmica dos materiais submetidos a altas temperaturas, foi adicionado titânio ao sistema híbrido. Obteve-se assim um material híbrido contendo cálcio, sem vestígios de nitrato, mantendo-se uma quantidade significativa de grupos metilo. A dificuldade de obter amostras monolíticas de híbridos PDMS-SiO2-CaO por síntese sol-gel e posterior tratamento térmico para eliminação de nitratos, criou um novo objetivo: a procura de fontes alternativas de cálcio. Novas fontes de cálcio foram avaliadas para substituir o nitrato tendo-se escolhido o acetato de cálcio devido à sua boa solubilidade em água. Estabeleceram-se protocolos de preparação por sol-gel a partir dos quais se obtiveram amostras monolíticas homogéneas. Além de melhorar a bioatividade, o titânio e o zircónio influenciam as características estruturais e microestruturais dos sistemas binários SiO2-TiO2 e SiO2-ZrO2, bem como dos sistemas PDMS-TiO2 e PDMS-ZrO2. Neste contexto, foram estudadas diferentes condições experimentais no processo sol-gel, de modo a compreender o papel destes aditivos no sistema SiO2-PDMS. Concluiu-se que o titânio e o zircónio influenciam a cinética do processo sol-gel devido à diferente reatividade dos despectivos alcóxidos, conduzindo à obtenção de xerogéis híbridos com diferentes características e morfologias. O isopropóxido de titânio, menos reativo do que o propóxido de zircónio, foi escolhido como fonte de titânio, usado como aditivo no sistema PDMS-SiO2CaO. Dois procedimentos diferentes de preparação por sol-gel foram seguidos, utilizando a mesma composição de base e o acetato de cálcio como fonte de cálcio. Foram obtidas diferentes microestruturas muito hidrofóbicas e ambas mostraram ser biocompatíveis após serem testadas com células osteoblásticas MG63. Finalmente, foi avaliado o papel do estrôncio (conhecido nos biovidros por favorecer a formação de tecido ósseo e reduzir a sua reabsorção) no sistema híbrido PDMS-CaO-SiO2-TiO2. O material produzido revelou-se biocompatível, através de testes com células osteoblásticas MG63, e com a capacidade de libertar estrôncio dentro dos limites considerados adequados para a reparação do tecido ósseo.
Alrawashdeh, Rula. "Implantable antennas for biomedical applications". Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2010435/.
Pełny tekst źródłaSanami, Mohammad. "Auxetic materials for biomedical applications". Thesis, University of Bolton, 2015. http://ubir.bolton.ac.uk/785/.
Pełny tekst źródłaBeyazit, Selim. "Functional nanoparticles for biomedical applications". Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2163.
Pełny tekst źródłaThis thesis describes the development of novel methods to obtain versatile, functional nanoparticles that can potentially be used for biomedical applications such as drug delivery, bioassays and bioimaging. Nanomaterials are versatile tools that have found applications as drug carriers, bioimaging or biosensing. In particular, core-shell type nanoparticles have attracted much attention due to their small size, high surface to volume ratio and biocompatibility. In this regard, we propose in the first part of the thesis (Chapter 2), a novel method to obtain core-shell nanoparticles via combined radical emulsion and living polymerizations. Polystyrene core seeds of 30-40 nm, with a narrow size distribution and surface-bound iniferter moieties were used to further initiate polymerization of a polymer shell. Core-shell nanoparticles were prepared in this way. Different types of shells : anionic, zwitterionic, thermoresponsive or molecularly imprinted shells, were thus grafted. Our method is a versatile platform with the ability to add multi-functionalities in either the core for optical sensing or/and the shell for cell interaction and toxicity studies, as well as receptor materials for cell imaging. In the second part of the thesis (Chapter 3), we describe a novel and versatile method for surface modification of upconverting nanoparticles (UCPs). UCPs are lanthanide-doped fluorescent nanocrystals that have recently attracted much attention. Their fluorescence is excitated in the near infrared, which makes them ideal as labels in biomedical applications such as bioimaging and bioassays, since the autofluorescence background is minimized compared to organic dyes and quantum dots. However, UCPs are hydrophobic and non-compatible with aqueous media, therefore prior surface modification is essential. The strategy that we propose makes use oft he UV or Vis emission light of near-infrared photoexcited upconverting nanoparticles, as secondary light source for the localized photopolymerization of thin hydrophilic shells around the UCPs. Our method offers great advantages like ease of application and rapid surface functionalization for attaching various ligands and therefore can provide a platform to prepare polymeric-encapsulated UCPs for applications in bioassays, optical imaging and drug delivery. Stimuli responsive hydrogels are materials that can change their physico-chemical properties in response to external stimuli such as temperature, pH or light. These smart materials play critical roles in biomedical applications such as drug delivery or tissue engineering. The third part of the thesis (Chapter 4) proposes a novel method for obtaining photo and pH-responsive supramolecularly crosslinked hydrogels. Two building blocks, one containing photoresponsive 4-[(4-methacryloyloxy)phenylazo] benzoic acid and the other, consisting of cationic 2-(diethylamino)ethyl methacrylate units, were first synthesized. Combining the two building blocks yielded photo and pH responsive monodisperse 100-nm particles. These nanoparticles can be eventually utilized for drug delivery, especially delivery of biomolecules such as siRNAs or proteins. In conclusion, we have designed several new efficient, versatile, generic and easily applicable methods to obtain functionalized polymer nanoparticles and nanocomposites that can be applied in various biomedical domains like drug delivery, biosensing, bioassays and bioimaging
Au, Kin Man. "Biomedical applications of polypyrrole nanoparticles". Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/3718/.
Pełny tekst źródłaMcClure, Thomas Dale. "Biomedical applications of mass spectrometry". Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185490.
Pełny tekst źródłaWang, Zhaohui. "Biomedical Applications of Acoustoelectric Effect". Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/204330.
Pełny tekst źródłaGoldyn, Kamila. "Zeolite nanocrystals for biomedical applications". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC240/document.
Pełny tekst źródłaThe properties of nanozeolites, namely, large surface area, hydrothermal stability and non-toxic nature, enable their utilization in forward-looking applications, including biomedicine (sensors, drug and gas delivery) and microbiology (antibacterial agents). Hence, a lot of research has been devoted to study the new biomedical applications using zeolitic materials, their full potential has still not been fully unveiled.It is well recognised that growing resistance to already established treatments of tumors and bacterial infections using radiotherapy and antibiotics is a distressing matter. Therefore, the development of new therapeutic strategies towards above issues is of great demand.The goal of this PhD research is to synthesise and post-synthetically modify nanosized zeolites for biomedical applications. This involves the ion-exchange of zeolite with various cations to find the most suitable one for desired applications in regards to antimicrobial treatment, tumour tissue reoxygenation and gas delivery.In this study, we report: (i) the effect of copper modified nanosized FAU type zeolite on ESKAPE type bacteria (Chapter 3), (ii) the metal containing nanozeolite as a tool for tissue oxygenation and visualisation using MRI (Chapter 4), and lastly (iii) the use of FAU nanozeolite as nitric oxide and carbon dioxide gas vector to prevent life threatening conditions (Chapter 5)
PAVIGLIANITI, ANNUNZIATA. "Neural Models in Biomedical Applications". Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2957752.
Pełny tekst źródłaCapuccini, Chiara <1979>. "Biomimetic Materials for Biomedical Applications". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1447/1/chiara_capuccini_tesi.pdf.
Pełny tekst źródłaCapuccini, Chiara <1979>. "Biomimetic Materials for Biomedical Applications". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1447/.
Pełny tekst źródłaSkvortsova, Yulia Alexandrovna Geng M. Lei. "Simulation of tissues for biomedical applications". [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/436.
Pełny tekst źródłaTahirbegi, Islam Bogachan. "Electrochemical multi-sensors for biomedical applications". Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/132092.
Pełny tekst źródłaEl diagnóstico médico es uno de los campos que han obtenido más ventajas de la capacidad de los electrodos selectivos de iones (ESI) para la detección de iones, ya que los cambios en la concentración de estos elementos están directamente relacionados con diferentes enfermedades. La detección de isquemia es una de las favorecidas por estos sensores. La isquemia es una disminución del suministro de sangre a un órgano y se requiere una detección rápida y precisa. Los métodos de detección in situ en el tejido de los órganos conllevan una detección temprana de la isquemia y el estómago es uno de los órganos más importantes en la detección de Ischemia. Sin embargo, el bajo pH del jugo gástrico del estómago hace difícil la fabricación de sensores de estado sólido con ESI estables y funcionales, principalmente debido a la interferencia de aniones y al problema de la adhesión entre la membrana ESI y la superficie del electrodo. En esta tesis, se han diseñado y fabricado electrodos selección de iones de pH y potasio ESI de estado sólido basados en la potenciometría y sensores de bioimpedancia y se han integrado en una matriz en miniatura para su aplicación en la cirugía endoscópica para la detección de isquemia in vivo en el interior del estómago. El conjunto de sensores se integró con éxito en endoscopio comercial y se inserto en el interior del estómago de un cerdo. El flujo de sangre de cierta área del estómago se interrumpió mediante la ligación o pinzamiento de los vasos sanguineos y la pared del órgano. Los pasos de isquemia y reperfusión fueron detectados con éxito con los sensores de potasio y de pH. Estos resultados también indican que se puede obtener información sobre el daño en el tejido hipóxico recogido con esta matriz. Los sensores de pH de sólido desarrollados permiten la detección pH bajos de 0,7 a 2,5, que es el único ejemplo en la literatura de detección de pH tan bajos con este tipo de sensores y por lo tanto hacen que sea este sensor de un dispositivo único para la detección de isquemia en el estómago.
Seras, Franzoso Joaquin. "Biomedical Applications of Bacterial Inclusion Bodies". Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/108128.
Pełny tekst źródłaBacterial Inclusion Bodies (IBs) are protein deposits usually observed in recombinant bacteria during protein production processes. These aggregates have been historically regarded as waste by-products and therefore discarded. However, in the last two decades this perception has changed. Numerous studies have provided evidence that these particles are in fact supramolecular structures formed by stereospecific cross-molecular protein-protein interactions, morphologically and mechanically stable, easy to purify and highly tunable in terms of biological activity, size and physicochemical properties,. In the present work it has been explored to exploit appealing IB properties for biomedical applications. In this regard, we have focused on the suitability of IBs as particulate protein nanomaterial to produce engineered nanotopographies able to modulate mammalian cell responses. Nanomodification of scaffolds to stimulate a specific cell response is a promising field for tissue engineering and regenerative medicine. In this regard, we have provided evidence that bacterial IBs can be effectively deposited onto cell culture surfaces generating altered nanotopographies. These IB-based topographies, when used as cell culture substrate, exhibited higher capability for cell adhesion in four distinct cell lines. Moreover, IBs were shown to be able of actively stimulating cell proliferation through mechanotransductive events, being these two activities crucial for cell colonization of implant materials. On the other hand, it has been also proved how IB-based topographies are able to direct mesenchymal stem cells (MSCs) to osteogenesis. Noteworthy, cell adhesion, cell proliferation and cell differentiation can be controlled by the proper choice of Escherichia coli producing strain genetic background, rendering physicochemically and morphologically distinct IBs. Finally, IBs have been shown capable of releasing significant amounts of their forming protein, prompting their use as a delivery platform of therapeutic protein drugs, from nanostructured surfaces to cell cultures. This last application would be particularly appealing for long term treatments, since IBs provide a sustained release of their active component. Moreover, this delivery capacity adds an extra level of complexity and control to the previous mentioned IB applications, through the combination of the mechanical effect of the IB-based topographies with the biological activity of the IB-forming protein
Zhang, Changhong. "Elastic degradable polyurethanes for biomedical applications". Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1219848181/.
Pełny tekst źródłaKim, Jason Sung Lin Wenbin. "Innovative biomedical applications using hybrid nanoparticles". Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,1500.
Pełny tekst źródłaTitle from electronic title page (viewed Sep. 16, 2008). " ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry.
Dobmeier, Kevin Perry Schoenfisch Mark H. "Xerogel coatings for biomedical sensing applications". Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,1627.
Pełny tekst źródłaTitle from electronic title page (viewed Sep. 16, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry Analytical Chemistry." Discipline: Chemistry; Department/School: Chemistry.
Cole, Mary Janet. "Fluorescence lifetime imaging for biomedical applications". Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393718.
Pełny tekst źródłaAshfield, Laura. "Copper complexes with potential biomedical applications". Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426384.
Pełny tekst źródłaMewis, Ryan Edward. "Synthesis of tetraazamacrocyclic complexes : biomedical applications". Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:1751.
Pełny tekst źródłaFlores-Merino, Miriam Veronica. "Nanofunctionalisation of hydrogels for biomedical applications". Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548484.
Pełny tekst źródłaHoffmann, Ilona. "MAGNESIUM-TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS". UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/36.
Pełny tekst źródłaNiazi, M. Khalid Khan. "Image Filtering Methods for Biomedical Applications". Doctoral thesis, Uppsala universitet, Centrum för bildanalys, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158679.
Pełny tekst źródłaSeidel, Susanne. "Nanoliter-droplet thermophoresis for biomedical applications". Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-173039.
Pełny tekst źródłaSpezifische Interaktionen von Biomolekülen sind von zentraler Bedeutung für zelluläre Prozesse, die Entwicklung neuer Medikamente und die Immundiagnostik. Solche biologischen Bindungsvorgänge lassen sich mittels Thermophorese, der gerichteten Molekülbewegung entlang eines Temperaturgradienten, quantifizieren. Die Thermophorese von Biomolekülen kann durch Infrarotlaser-Heizen induziert und mittels Fluoreszenz analysiert werden. Die Weiterentwicklung dieses optischen Verfahrens bezüglich des Messinstruments, des Versuchsdesigns und der biomedizinischen Anwendungen war das Ziel der vorliegenden Dissertation. Im ersten Teil wird eine neuartige Technik vorgestellt, die den Probenverbrauch verglichen mit etablierten Kapillarmessungen um den Faktor 50 verkleinert. Statt in Kapillaren wurde in 10 nl-großen Probentropfen gemessen, die mit einem kontaktfreien Liquid-Handler (Labcyte) in eine 1536-Well-Platte übertragen wurden. Zum Schutz vor Verdunstung wurden die Tropfen in eine Öl-Tensid-Schicht transferiert. Temperaturinduzierte Effekte in diesem Wasser-in-Öl-System wurden experimentell charakterisiert, wobei die Ergebnisse durch numerischen Simulationen bestätigt wurden. Dass sich die Methode für biomolekulare Interaktionstests eignet, wurde anhand eines DNA-Aptamers belegt. Die Miniaturisierung und die einfache Handhabung der Multi-Well-Platten ermöglichen automatisierte Hochdurchsatz-Screens. Neben Aptameren sollten sich auch Proteine sehr gut untersuchen lassen, wenn man von einer ähnlichen Anwendungsbreite wie bei Kapillarmessungen ausgeht. Auf derartige Proteinuntersuchungen mittels Kapillarthermophorese wird im zweiten Teil eingegangen. Analysen wurden nicht nur in diversen Puffern und sogar in rohem Zelllysat durchgeführt, sondern auch mit unterschiedlichsten Bindungspartnern. So wurden Affinitäten zwischen Protein und Protein, Protein und Peptid, sowie Protein und niedermolekularer Verbindung mit hoher Genauigkeit bestimmt. Thermophoresetests gewinnen durch das in dieser Arbeit präsentierte, markierungsfreie Verfahren zusätzlich an Flexibilität. Es basiert auf der intrinsischen UV-Fluoreszenz von Proteinen, die auf aromatische Aminosäuren, hauptsächlich Tryptophan, zurückzuführen ist. Somit müssen Proteine nicht mehr mit Fluoreszenzfarbstoffen markiert werden, was Zeit spart und Artefakte ausschließt. Der dritte Teil behandelt die Quantifizierung von Antikörpern. Thermophoretische Immunassays wurden für zwei biomedizinische Fragestellungen eingesetzt. Zunächst wurde der aus therapeutischer Sicht interessante Antikörper MCPR3-7 untersucht. Er ist gegen Proteinase 3 (PR3) gerichtet, das Hauptepitop autoimmuner Antikörper bei der granulomatösen Polyangiitis. Mithilfe der Thermophorese wurde sowohl die Affinität von MCPR3-7 für verschiedene PR3-Formen quantifiziert, als auch gezeigt, dass der Antikörper die Komplexierung von PR3 und alpha-1-Proteinaseinhibitor (alpha-1PI) stört. Ferner wird ein diagnostisches Autokompetitionsverfahren vorgestellt, das gleichzeitig die Affinität und die Konzentration von Biomarkern in humanem Blutserum quantifiziert. Autoantikörper gegen den kardialen β1-Adrenozeptor, die mit der dilatativen Kardiomyopathie assoziiert sind, wurden mithilfe des kurzen Peptides COR1 analysiert, das das dominante Epitop nachstellt. Die Ergebnisse belegen, dass die Thermophorese ein wertvolles Werkzeug für die Antikörpercharakterisierung ist. Zusammengefasst lassen die vorgestellten Neuerungen eine umfangreiche Erweiterung des Anwendungssprektrums der Biomolekülthermophorese in der Grundlagenforschung, der industriellen Wirkstoffsuche und der klinischen Labordiagnostik erwarten.
Besar, Serry Shehata Ali. "Two new instruments for biomedical applications". Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236862.
Pełny tekst źródłaEsfahani, Siavash. "Electronic nose implementation for biomedical applications". Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/108881/.
Pełny tekst źródłaYu, Fei. "Corrosion of titanium for biomedical applications". Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5874/.
Pełny tekst źródłaGilbert, Jonathan Brian. "Biomedical applications of nanostructured polymer films". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91058.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 153-164).
Functional polymeric thin films are often stratified with nanometer level structure and distinct purposes for each layer. These nanostructured polymeric materials are useful in a wide variety of applications including drug delivery, tissue engineering, controlling condensation and polymeric batteries; all of which will be discussed in this work. The first area of my thesis will detail the use of C₆₀ cluster-ion depth profiling X-ray Photoelectron Spectroscopy (XPS) to fundamentally understand how thin film structure and function relate. This method has the unique capability to determine the atomic composition and chemical state of polymeric thin films with <10nm nanometer depth resolution without any chemical labeling or modification. Using this technique, I probed the nanostructure of functional thin films to quantify the interlayer diffusion of the biopolymer chitosan as well as demonstrate methods to stop this diffusion. I also explored the role of interlayer diffusion in the design of hydrophobic yet antifogging 'zwitter-wettable' surfaces. Additionally, I probed the lithium triflate salt distribution in solid block copolymer battery electrolytes (PS-b-POEM) to understand the lithium-ion distribution within the POEM block. In the second area of my thesis, I show how the nanostructure of materials control the function of polymeric particles in vitro and in vivo. One example is a 'Cellular Backpack' which is a flat, anisotropic, stratified polymeric particle that is hundreds of nanometers thick and microns wide. In partnership with the Mitragotri group at UCSB, we show that cellular backpacks are phagocytosis resistant, and when attached to a cell, the cell maintains native functions. These capabilities uniquely position backpacks for cell-mediated therapeutic delivery and we show in vivo that immune cells attached to backpacks maintain their ability to home to sites of inflammation. In addition, we have designed polymeric microtubes that can control their orientation on the surface of living cells. Inspired by chemically non-uniform Janus particles, we designed tube-shaped, chemically non-uniform microparticles with cell-adhesive ligands on the ends of the tubes and a cell-resistant surface on the sides. Our results show that by altering the surface chemistry on the end versus the side, we can control the orientation of tubes on living cells. This advance opens the capability to control phagocytosis and design cellular materials from the bottom up.
by Jonathan Brian Gilbert.
Ph. D.
Tang, Selina Vi Yu. "Synthesis of nanomaterials for biomedical applications". Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14101/.
Pełny tekst źródłaCorbett, Daniel James. "Functional hydrogel coatings for Biomedical applications". Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.676276.
Pełny tekst źródła