Gotowa bibliografia na temat „Biomedical applications of FBGs”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biomedical applications of FBGs”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biomedical applications of FBGs"
Shekhar, Himanshu, Kuldeep Jajoria, Chandan K. Jha i Arup L. Chakraborty. "Fiber Bragg grating technology for biomedical ultrasound applications". Journal of the Acoustical Society of America 152, nr 4 (październik 2022): A226. http://dx.doi.org/10.1121/10.0016090.
Pełny tekst źródłaZhang, Wen, Lianqing Zhu, Mingli Dong, Xiaoping Lou i Feng Liu. "A Temperature Fiber Sensor Based on Tapered Fiber Bragg Grating Fabricated by Femtosecond Laser". Applied Sciences 8, nr 12 (14.12.2018): 2616. http://dx.doi.org/10.3390/app8122616.
Pełny tekst źródłaDe Tommasi, Francesca, Chiara Romano, Daniela Lo Presti, Carlo Massaroni, Massimiliano Carassiti i Emiliano Schena. "FBG-Based Soft System for Assisted Epidural Anesthesia: Design Optimization and Clinical Assessment". Biosensors 12, nr 8 (16.08.2022): 645. http://dx.doi.org/10.3390/bios12080645.
Pełny tekst źródłaKOT, Marcin, Łukasz MAJOR, Roman MAJOR, Jurgen LACKNER i Maureen PONTIE. "COATINGS WITH ADVANCED MICROSTRUCTURE FOR BIOMEDICAL APPLICATIONS". Tribologia 272, nr 2 (30.04.2017): 77–83. http://dx.doi.org/10.5604/01.3001.0010.6301.
Pełny tekst źródłaChaitin, Hersh, Michael L. Lu, Michael B. Wallace i Yunqing Kang. "Development of a Decellularized Porcine Esophageal Matrix for Potential Applications in Cancer Modeling". Cells 10, nr 5 (29.04.2021): 1055. http://dx.doi.org/10.3390/cells10051055.
Pełny tekst źródłaBinetti, Leonardo, Alicja Stankiewicz i Lourdes S. M. Alwis. "Graphene-Oxide and Hydrogel Coated FBG-Based pH Sensor for Biomedical Applications". Proceedings 2, nr 13 (3.12.2018): 789. http://dx.doi.org/10.3390/proceedings2130789.
Pełny tekst źródłaKanellos, George T., George Papaioannou, Dimitris Tsiokos, Christos Mitrogiannis, George Nianios i Nikos Pleros. "Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications". Optics Express 18, nr 1 (22.12.2009): 179. http://dx.doi.org/10.1364/oe.18.000179.
Pełny tekst źródłaSafoine, Meryem, Alexandra Côté, Romane Leloup, Cindy Jean Hayward, Marc-André Plourde Campagna, Jean Ruel i Julie Fradette. "Engineering naturally-derived human connective tissues for clinical applications using a serum-free production system". Biomedical Materials 17, nr 5 (11.08.2022): 055011. http://dx.doi.org/10.1088/1748-605x/ac84b9.
Pełny tekst źródłaMasud, Usman, Muhammad Rizwan Amirzada, Hassan Elahi, Faraz Akram, Ahmed Zeeshan, Yousuf Khan, Muhammad Khurram Ehsan i in. "Design of Two-Mode Spectroscopic Sensor for Biomedical Applications: Analysis and Measurement of Relative Intensity Noise through Control Mechanism". Applied Sciences 12, nr 4 (11.02.2022): 1856. http://dx.doi.org/10.3390/app12041856.
Pełny tekst źródłaHe, Yanlin, Xu Zhang, Lianqing Zhu, Guangkai Sun, Xiaoping Lou i Mingli Dong. "Optical Fiber Sensor Performance Evaluation in Soft Polyimide Film with Different Thickness Ratios". Sensors 19, nr 4 (15.02.2019): 790. http://dx.doi.org/10.3390/s19040790.
Pełny tekst źródłaRozprawy doktorskie na temat "Biomedical applications of FBGs"
Child, Hannah. "Nanoparticles for biomedical applications". Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3583/.
Pełny tekst źródłaHughes-Brittain, Nanayaa Freda. "Photoembossing for biomedical applications". Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8294.
Pełny tekst źródłaAbbas, Aiman Omar Mahmoud. "Chitosan for biomedical applications". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/771.
Pełny tekst źródłaZomer, Volpato Fabio. "Composites for Biomedical Applications". Doctoral thesis, Università degli studi di Trento, 2010. https://hdl.handle.net/11572/368680.
Pełny tekst źródłaZomer, Volpato Fabio. "Composites for Biomedical Applications". Doctoral thesis, University of Trento, 2010. http://eprints-phd.biblio.unitn.it/334/1/PhD_Thesis_Zomer_Volpato%2C_Fabio.pdf.
Pełny tekst źródłaChin, Suk Fun. "Superparamagnetic nanoparticles for biomedical applications". University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0128.
Pełny tekst źródłaZurutuza, Amaia. "Novel microgels for biomedical applications". Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248836.
Pełny tekst źródłaCantini, Eleonora. "Switchable surfaces for biomedical applications". Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8040/.
Pełny tekst źródłaChristiansen, Michael G. (Michael Gary). "Magnetothermal multiplexing for biomedical applications". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111248.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 170-176).
Research on biomedical applications of magnetic nanoparticles (MNPs) has increasingly sought to demonstrate noninvasive actuation of cellular processes and material responses using heat dissipated in the presence of an alternating magnetic field (AMF). By modeling the dependence of hysteresis losses on AMF amplitude and constraining AMF conditions to be physiologically suitable, it can be shown that MNPs exhibit uniquely optimal driving conditions that depend on controllable material properties such as magnetic anisotropy, magnetization, and particle volume. "Magnetothermal multiplexing," which relies on selecting materials with substantially distinct optimal AMF conditions, enables the selective heating of different kinds of collocated MNPs by applying different AMF parameters. This effect has the potential to extend the functionality of a variety of emerging techniques with mechanisms that rely on bulk or nanoscale heating of MNPs. Experimental investigations on methods for actuating deep brain stimulation, drug release, and shape memory polymer response are summarized, with discussion of the feasibility and utility of applying magnetothermal multiplexing to similar systems. The possibility of selective heating is motivated by a discussion of various models for heat dissipation by MNPs in AMFs, and then corroborated with experimental calorimetry measurements. A heuristic method for identifying materials and AMF conditions suitable for multiplexing is demonstrated on a set of iron oxide nanoparticles doped with various concentrations of cobalt. Design principles for producing AMFs with high amplitude and ranging in frequency from 15kHz to 2.5MHz are explained in detail, accompanied by a discussion of the outlook for scalability to clinically relevant dimensions. The thesis concludes with a discussion of the state of the field and the broader lessons that can be drawn from the work it describes.
by Michael G. Christiansen.
Ph. D.
Degani, Ismail. "Biomedical applications of holographic microscopy". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118494.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 77-79).
Identifying patients with aggressive cancers is a major healthcare challenge in resource-limited settings such as sub-Saharan Africa. Holographic imaging techniques have been shown to perform diagnostic screening at low cost in order to meet this clinical need, however the computational and logistical challenges involved in deploying such systems are manifold. This thesis aims to make two specific contributions to the field of point-of-care diagnostics. First, it documents the design and construction of low-cost holographic imaging hardware which can serve as a template for future research and development. Second, it presents a novel deep-learning architecture that can potentially lower the computational burden of digital holography by replacing existing image reconstruction methods. We demonstrate the effectiveness of the algorithm by reconstructing biological samples and quantifying their structural similarity relative to spatial deconvolution methods. The approaches explored in this work could enable a standalone holographic platform that is capable of efficiently performing diagnostic screening at the point of care.
by Ismail Degani.
S.M. in Engineering and Management
Książki na temat "Biomedical applications of FBGs"
Djokić, Stojan S., red. Biomedical Applications. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3125-1.
Pełny tekst źródłaservice), SpringerLink (Online, red. Biomedical Applications. Boston, MA: Springer US, 2012.
Znajdź pełny tekst źródłaS, Abd-El-Aziz Alaa, red. Biomedical applications. Hoboken, N.J: Wiley-Interscience, 2004.
Znajdź pełny tekst źródłaVermette, Patrick. Biomedical applications of polyurethanes. Georgetown, Tex: Landes Bioscience, 2001.
Znajdź pełny tekst źródłaKlajnert, Barbara, Ling Peng i Valentin Cena, red. Dendrimers in Biomedical Applications. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737296.
Pełny tekst źródłaAndrianov, Alexander K. Polyphosphazenes for biomedical applications. Hoboken, N.J: Wiley, 2009.
Znajdź pełny tekst źródłaGopi, Sreerag, Preetha Balakrishnan i Nabisab Mujawar Mubarak, red. Nanotechnology for Biomedical Applications. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7483-9.
Pełny tekst źródłaLabhasetwar, Vinod, i Diandra L. Leslie-Pelecky, red. Biomedical Applications of Nanotechnology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470152928.
Pełny tekst źródłaJežek, Jan, Jan Hlaváček i Jaroslav Šebestík. Biomedical Applications of Acridines. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63953-6.
Pełny tekst źródłaRai, Mahendra, Avinash P. Ingle i Serenella Medici, red. Biomedical Applications of Metals. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74814-6.
Pełny tekst źródłaCzęści książek na temat "Biomedical applications of FBGs"
Bakshi, Mandeep Singh, i Gurinder Kaur Ahluwalia. "Biomedical Applications". W Applications of Chalcogenides: S, Se, and Te, 263–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41190-3_7.
Pełny tekst źródłaHastings, G. W. "Biomedical Applications". W Carbon Fibres and Their Composites, 261–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70725-4_17.
Pełny tekst źródłaSchultz, Jerome S. "Biomedical Applications". W Synthetic Membranes: Science, Engineering and Applications, 647–65. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4712-2_22.
Pełny tekst źródłaPopot, Jean-Luc. "Biomedical Applications". W Membrane Proteins in Aqueous Solutions, 659–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73148-3_15.
Pełny tekst źródłaMéndez, Vicenç, Sergei Fedotov i Werner Horsthemke. "Biomedical Applications". W Reaction–Transport Systems, 245–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11443-4_8.
Pełny tekst źródłaRoppolo, Ignazio, Annalisa Chiappone, Alessandro Chiadò, Gianluca Palmara i Francesca Frascella. "Biomedical Applications". W High Resolution Manufacturing from 2D to 3D/4D Printing, 155–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13779-2_7.
Pełny tekst źródłaBaylón, Karen, Elisabetta Ceretti, Claudio Giardini i Maria Luisa Garcia-Romeu. "Forming Applications". W Biomedical Devices, 49–77. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119267034.ch3.
Pełny tekst źródłaÖzel, Tuğrul, Elisabetta Ceretti, Thanongsak Thepsonthi i Aldo Attanasio. "Machining Applications". W Biomedical Devices, 99–120. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119267034.ch5.
Pełny tekst źródłaYadav, Shakti Kumar, Sompal Singh i Ruchika Gupta. "Applications of Statistics". W Biomedical Statistics, 3–7. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9294-9_1.
Pełny tekst źródłaÖzel, Tuğrul, Joaquim De Ciurana Gay, Daniel Teixidor Ezpeleta i Luis Criales. "Laser Processing Applications". W Biomedical Devices, 79–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119267034.ch4.
Pełny tekst źródłaStreszczenia konferencji na temat "Biomedical applications of FBGs"
Korganbayev, Sanzhar, Yerzhan Orazayev, Sultan Sovetov, Ali Bazyl, Daniele Tosi, Emiliano Schena, Carlo Massaroni, Riccardo Gassino, Alberto Vallan i Guido Perrone. "Thermal gradient estimation with fiber-optic chirped FBG sensors: Experiments in biomedical applications". W 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234119.
Pełny tekst źródłaKanellos, George T., Dimitris Tsiokos, Nikos Pleros, Paul Childs i Stavros Pissadakis. "Enhanced durability FBG-based sensor pads for biomedical applications as human-machine interface surfaces". W 2011 International Workshop on Biophotonics. IEEE, 2011. http://dx.doi.org/10.1109/iwbp.2011.5954848.
Pełny tekst źródłaGoebel, Thorsten A., Maximilian Weissflog, Ria G. Krämer, Maximilian Heck, Daniel Richter i Stefan Nolte. "Tuning multichannel filters based on FBG in multicore fibers". W Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIX, redaktorzy Peter R. Herman, Michel Meunier i Roberto Osellame. SPIE, 2019. http://dx.doi.org/10.1117/12.2513850.
Pełny tekst źródłaYang, Jianjun, Jiansheng Liu, Baorui Yu, Minghui Ma, Jingyuan Hu, Hongfeng Shao, Xin Zhao i Zheng Zheng. "Shape sensing based on dual-comb demodulation of a fiber Bragg grating sensing array". W Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.ctha6d_01.
Pełny tekst źródłaSaccomandi, P., M. A. Caponero, A. Polimadei, M. Francomano, D. Formica, D. Accoto, E. Tamilia, F. Taffoni, G. Di Pino i E. Schena. "An MR-compatible force sensor based on FBG technology for biomedical application". W 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944929.
Pełny tekst źródłaFaustov, A., P. Saffari, C. Koutsides, A. Gusarov, M. Wuilpart, P. Megret, K. Kalli i L. Zhang. "Highly radiation sensitive Type IA FBGs for dosimetry applications". W 2011 12th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2011. http://dx.doi.org/10.1109/radecs.2011.6131460.
Pełny tekst źródłaLaffont, Guillaume. "Challenging Applications for Regenerated FBGs Focus on Temperature Sensing". W Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/bgpp.2014.bm2d.1.
Pełny tekst źródłaYang, Shiquan, Zhaohui Li, Shuzhong Yuan, Xiaoyi Dong, Guiyun Kai i Qida Zhao. "Dual-wavelength actively mode-locked erbium-doped fiber laser using FBGs". W High-Power Lasers and Applications, redaktor L. N. Durvasula. SPIE, 2003. http://dx.doi.org/10.1117/12.478265.
Pełny tekst źródłaGouvêa, Paula M. P. "Applications of FBGs in Oil & Gas and in Aeronautics". W Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/bgpp.2016.bm5b.1.
Pełny tekst źródłaCzaplińska, Katarzyna, Wiktoria Kondrusik, Piotr Araszkiewicz i Konrad Markowski. "Superstructure FBGs induction through applying of the pressing force". W Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, redaktorzy Ryszard S. Romaniuk i Maciej Linczuk. SPIE, 2019. http://dx.doi.org/10.1117/12.2538122.
Pełny tekst źródłaRaporty organizacyjne na temat "Biomedical applications of FBGs"
Gao, Jun. Biomedical Applications of Microfluidic Technology. Office of Scientific and Technical Information (OSTI), marzec 2014. http://dx.doi.org/10.2172/1126675.
Pełny tekst źródłaZimmerman, J. BMDO Technologies for Biomedical Applications. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1997. http://dx.doi.org/10.21236/ada338549.
Pełny tekst źródłaKuehl, Michael, Susan Marie Brozik, David Michael Rogers, Susan L. Rempe, Vinay V. Abhyankar, Anson V. Hatch, Shawn M. Dirk i in. Biotechnology development for biomedical applications. Office of Scientific and Technical Information (OSTI), listopad 2010. http://dx.doi.org/10.2172/1011213.
Pełny tekst źródłaChait, Richard, i Julius Chang. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2001. http://dx.doi.org/10.21236/ada396606.
Pełny tekst źródłaFelberg, Lisa E. Computational simulations and methods for biomedical applications. Office of Scientific and Technical Information (OSTI), lipiec 2017. http://dx.doi.org/10.2172/1488415.
Pełny tekst źródłaChait, Richard, Teri Thorowgood i Toni Marechaux. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2002. http://dx.doi.org/10.21236/ada407761.
Pełny tekst źródłaRadparvar, M. Imaging systems for biomedical applications. Final report. Office of Scientific and Technical Information (OSTI), czerwiec 1995. http://dx.doi.org/10.2172/192410.
Pełny tekst źródłaChait, Richard. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2000. http://dx.doi.org/10.21236/ada391253.
Pełny tekst źródłaPeer, Akshit. Periodically patterned structures for nanoplasmonic and biomedical applications. Office of Scientific and Technical Information (OSTI), sierpień 2017. http://dx.doi.org/10.2172/1505186.
Pełny tekst źródłaSun, Xiaoxing. Mesoporous silica nanoparticles for biomedical and catalytical applications. Office of Scientific and Technical Information (OSTI), styczeń 2011. http://dx.doi.org/10.2172/1029607.
Pełny tekst źródła