Gotowa bibliografia na temat „Biomedical and chemical applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biomedical and chemical applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biomedical and chemical applications"
Gibas, Iwona, i Helena Janik. "Review: Synthetic Polymer Hydrogels for Biomedical Applications". Chemistry & Chemical Technology 4, nr 4 (15.12.2010): 297–304. http://dx.doi.org/10.23939/chcht04.04.297.
Pełny tekst źródłaKai, Dan, i Xian Jun Loh. "Polyhydroxyalkanoates: Chemical Modifications Toward Biomedical Applications". ACS Sustainable Chemistry & Engineering 2, nr 2 (30.10.2013): 106–19. http://dx.doi.org/10.1021/sc400340p.
Pełny tekst źródłaWei, Min, Jiyoung Lee, Fan Xia, Peihua Lin, Xi Hu, Fangyuan Li i Daishun Ling. "Chemical design of nanozymes for biomedical applications". Acta Biomaterialia 126 (maj 2021): 15–30. http://dx.doi.org/10.1016/j.actbio.2021.02.036.
Pełny tekst źródłaZhou, Hua, Jingyun Tan i Xuanjun Zhang. "Nanoreactors for Chemical Synthesis and Biomedical Applications". Chemistry – An Asian Journal 14, nr 19 (17.09.2019): 3240–50. http://dx.doi.org/10.1002/asia.201900967.
Pełny tekst źródłaZhao, Hanjun. "Black Phosphorus Nanosheets: Synthesis and Biomedical Applications". Journal of Physics: Conference Series 2566, nr 1 (1.08.2023): 012015. http://dx.doi.org/10.1088/1742-6596/2566/1/012015.
Pełny tekst źródłaGhajarieh, A., S. Habibi i A. Talebian. "Biomedical Applications of Nanofibers". Russian Journal of Applied Chemistry 94, nr 7 (lipiec 2021): 847–72. http://dx.doi.org/10.1134/s1070427221070016.
Pełny tekst źródłaGhajarieh, A., S. Habibi i A. Talebian. "Biomedical Applications of Nanofibers". Russian Journal of Applied Chemistry 94, nr 7 (lipiec 2021): 847–72. http://dx.doi.org/10.1134/s1070427221070016.
Pełny tekst źródłaMarzo, Jose Luis, Josep Miquel Jornet i Massimiliano Pierobon. "Nanonetworks in Biomedical Applications". Current Drug Targets 20, nr 8 (10.05.2019): 800–807. http://dx.doi.org/10.2174/1389450120666190115152613.
Pełny tekst źródłaDe Sanctis, A., S. Russo, M. F. Craciun, A. Alexeev, M. D. Barnes, V. K. Nagareddy i C. D. Wright. "New routes to the functionalization patterning and manufacture of graphene-based materials for biomedical applications". Interface Focus 8, nr 3 (20.04.2018): 20170057. http://dx.doi.org/10.1098/rsfs.2017.0057.
Pełny tekst źródłaYU, Jing, Fei LIU, Zubair Yousaf Muhammad i Yang-Long HOU. "Magnetic Nanoparticles: Chemical Synthesis, Functionalization and Biomedical Applications". Acta Agronomica Sinica 40, nr 10 (2013): 903. http://dx.doi.org/10.3724/sp.j.1206.2013.00276.
Pełny tekst źródłaRozprawy doktorskie na temat "Biomedical and chemical applications"
Eccleston, Mark Edward. "Functional polymers for biomedical application : synthesis and applications". Thesis, Aston University, 1995. http://publications.aston.ac.uk/9591/.
Pełny tekst źródłaFleming, Melissa C. "Skin adhesive hydrogels for biomedical applications". Thesis, Aston University, 1999. http://publications.aston.ac.uk/9620/.
Pełny tekst źródłaGilbert, Jonathan Brian. "Biomedical applications of nanostructured polymer films". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91058.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 153-164).
Functional polymeric thin films are often stratified with nanometer level structure and distinct purposes for each layer. These nanostructured polymeric materials are useful in a wide variety of applications including drug delivery, tissue engineering, controlling condensation and polymeric batteries; all of which will be discussed in this work. The first area of my thesis will detail the use of C₆₀ cluster-ion depth profiling X-ray Photoelectron Spectroscopy (XPS) to fundamentally understand how thin film structure and function relate. This method has the unique capability to determine the atomic composition and chemical state of polymeric thin films with <10nm nanometer depth resolution without any chemical labeling or modification. Using this technique, I probed the nanostructure of functional thin films to quantify the interlayer diffusion of the biopolymer chitosan as well as demonstrate methods to stop this diffusion. I also explored the role of interlayer diffusion in the design of hydrophobic yet antifogging 'zwitter-wettable' surfaces. Additionally, I probed the lithium triflate salt distribution in solid block copolymer battery electrolytes (PS-b-POEM) to understand the lithium-ion distribution within the POEM block. In the second area of my thesis, I show how the nanostructure of materials control the function of polymeric particles in vitro and in vivo. One example is a 'Cellular Backpack' which is a flat, anisotropic, stratified polymeric particle that is hundreds of nanometers thick and microns wide. In partnership with the Mitragotri group at UCSB, we show that cellular backpacks are phagocytosis resistant, and when attached to a cell, the cell maintains native functions. These capabilities uniquely position backpacks for cell-mediated therapeutic delivery and we show in vivo that immune cells attached to backpacks maintain their ability to home to sites of inflammation. In addition, we have designed polymeric microtubes that can control their orientation on the surface of living cells. Inspired by chemically non-uniform Janus particles, we designed tube-shaped, chemically non-uniform microparticles with cell-adhesive ligands on the ends of the tubes and a cell-resistant surface on the sides. Our results show that by altering the surface chemistry on the end versus the side, we can control the orientation of tubes on living cells. This advance opens the capability to control phagocytosis and design cellular materials from the bottom up.
by Jonathan Brian Gilbert.
Ph. D.
Cantini, Eleonora. "Switchable surfaces for biomedical applications". Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8040/.
Pełny tekst źródłaLiu, Qingsheng. "Developing Ultralow-Fouling Multifunctional Polymers for Biomedical Applications". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1439840291.
Pełny tekst źródłaAl-Ahdal, Abdulrahman Ghaleb I. "Floating gate ISFET chemical inverters for semiconductor based biomedical applications". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9996.
Pełny tekst źródłaLéveillé, Valérie 1977. "A miniature atmospheric pressure glow discharge torch for localized biomedical applications /". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102676.
Pełny tekst źródłaCareful electrical probe measurements and circuit analyses reveal the strong effect of commercial passive voltage probes on the total load impedance of the APGD-t circuit. The larger the probe capacitance and cable length, the larger the component of the phase angle between the load voltage and circuit current signals induced by the probe. The calibration of the phase angles induced by the voltage probes allows to estimate that a resistive power of ~0.24-1 W is dissipated in the APGD- t under nominal operating conditions.
The gas kinetic and atomic He excitation temperatures, and the electron density near the APGD-t nozzle exit are estimated at ≈323 K, ≈1914 K and ≈1011 cm-3, respectively. This confirms that the APGD-t plasma jet near the nozzle exit is in a non-thermal equilibrium state. The emission spectroscopy study reveals the entrainment of air molecules (N2, O2 and H2O) in the plasma jet, and that their excitation by the plasma creates new reactive species (O and OH). A preliminary survey of the chemical reactions taking place in the plasma afterglow reveals that metastable He as well as OH, O, O2(a1Δg), O2(b1Σg+), N2, N2+ and O3 are plasma species that can reach and react with organic or biological surfaces located a few mm downstream of the APGD-t nozzle exit. This thesis demonstrates that the APGD-t is a promising tool for localized biomedical applications.
Norton, Abigail Belinda. "Microstructural understanding of hydrocolloid and mixed hydrocolloid systems for biomedical applications". Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/7081/.
Pełny tekst źródłaZhu, Tao, i Tao Zhu. "Smart Platform Development with Biomolecules for Biotechnological and Biomedical Applications". Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621757.
Pełny tekst źródłaSilva, Manuel António Martins da. "Chemical preparation and properties of calcium phosphate based materials for biomedical applications". Master's thesis, Universidade de Aveiro, 2004. http://hdl.handle.net/10773/17672.
Pełny tekst źródłaCalcium phosphate-based materials, in particular hydroxyapatite-based ones,are among the most important materials for biomedical applications (bone graftsubstitutes, drug delivery systems, etc.). Owing to their compositional similaritywith respect to hard tissues, these materials show superior bioactive,osteoconductive, cell seeding and growth environment properties. Additionally,their capability to adsorb biological important substances like proteins, drugs,etc. makes them interesting materials to be used as drug delivery systems. Several studies on the effects of morphological aspects like particle size,shape, pore size and pore volume on the biological behaviour of calciumphosphate-based materials have shown that the properties of these materialscannot be considered merely on compositional aspects, but the role ofmorphological issues must also be taken into consideration. In the present work, calcium phosphate particles with a wide range of sizeswere produced by precipitation in calcium/citrate/phosphate solutions. It wasobserved that the manipulation of experimental conditions, namely the citrate-calcium ratio (Cit/Ca) and the pH of the solution, allowed to producehydroxyapatite particles either as nanosized particles, either as micrometricsized aggregates with particular shapes. The different sizes and shapes wereanalyzed in the framework of nucleation and growth phenomena and henceattributed to the development of different particle surface charge conditionsrelated to the adsorption of differently charged citrate species. The study of the preparation of calcium phosphate porous granules by spraydrying the suspensions of the various precipitated hydroxyapatite particles wasalso undertaken in the present work. The obtained results showed that thedifferent morphologies of the suspended hydroxyapatite particles havesignificant effects on the spray dried granules’ morphology and microstructure,thus accounting for different pore size and pore size distributions. Moreover,the study of the spray dried granules heat treatment demonstrated that not onlythe granules’porosity may be further modified but also its crystal phasecomposition. In view of the potential applications of the porous materialsprepared in this work such as drug, growth factors and stem cells carriers or aspromoter of cell adhesion, the present study points out to a wide range ofpossibilities for producing calcium phosphate porous granules with a differentschedule of morphological characteristics.
Os materiais fosfo-cálcicos, particularmente aqueles à base de hidroxiapatite, são dos mais importantes para aplicações biomédicas, como por exemplo, a substituição óssea e os sistemas de libertação controlada de fármacos. Este facto deve-se principalmente à semelhança da sua composição com a parte inorgânica do tecido ósseo. É esta semelhança que está na origem dasnotáveis propriedades biológicas destes materiais, tais como: excelente bioactividade e osteoconductividade. Por outro lado, estes materiais possuem ainda a capacidade de adsorver substâncias com interesse biológico,(proteínas, drogas, etc.) o que os torna interessantes como sistemas delibertação controlada de fármacos. No entanto, alguns estudos têmdemonstrado que o comportamento biológico dos materiais fosfo-cálcicos não depende apenas da sua composição mas também de aspectos morfológicos, tais como: tamanho e forma departícula, tamanho e volume de poro, etc. No presente trabalho produziram-se, por precipitação a partir de soluções de cálcio/citrato/fosfato, partículas de fosfato de cálcio com uma grandediversidade de tamanhos. Observou-se que a manipulação das condiçõesexperimentais, nomeadamente a razão citrato/cálcio (Cit/Ca) e o pH dasolução, possibilitaram a produção de partículas de hidroxiapatite, quer na forma de partículas com tamanhos nanométricos, quer na forma de agregados micrométricos com formas peculiares. A variedade de tamanhos e formas daspartículas produzidas foi analisado no contexto dos fenómenos de nucleação e crescimento, tendo sido atribuídaao desenvolvimento de diferentes condições de carga superficial devidas à adsorção de espécies iónicas de citrato com diferentes cargas. No presente trabalho desenvolveu-se também o estudo da preparação de grânulos porosos de fosfato de cálcio, por atomização de suspensões de partículas de hidroxiapatite com diferentes morfologias. Os resultados obtidosmostraram que a utilização de partículas com diferentes morfologias influenciasignificativamente a morfologia e microestrutura dos grânulos atomizados, oque origina grânulos com diferentes tamanhos e distribuição de tamanho deporos. Além disso, demonstrou-se que o tratamento térmico permite modificar não só a porosidade dos grânulos, mas também a sua composição cristalina.Tendo em vista as potenciais aplicações dos materiais porosos preparadosneste trabalho, tais como sistemas de libertação controlada de fármacos,factores de crescimento e de células estaminais ou como promotores daadesão de células, o presente trabalho sugere a possibilidade de produção de grânulos de fosfato de cálcio com uma vasta multiplicidade de características morfológicas.
Książki na temat "Biomedical and chemical applications"
E, Sievers Robert, red. Selective detectors: Environmental, industrial, and biomedical applications. New York: Wiley, 1995.
Znajdź pełny tekst źródłaFigueiredo, Zilda Maria Britto. Chemical modifications of polymers for biomedical applications. Birmingham: University of Birmingham, 1994.
Znajdź pełny tekst źródłaSemiconductor device-based sensors for gas, chemical, and biomedical applications. Boca Raton, Fla: CRC, 2011.
Znajdź pełny tekst źródłaWael, Badawy, red. Lab-on-a-chip: Techniques, circuits, and biomedical applications. Boston: Artech House, 2010.
Znajdź pełny tekst źródłaBarbucci, Rolando. Hydrogels: Biological Properties and Applications. Milano: Springer-Verlag Milan, 2009.
Znajdź pełny tekst źródłaMacroporous polymers: Production properties and biotechnological/biomedical applications. Boca Raton: CRC Press/Taylor & Francis, 2010.
Znajdź pełny tekst źródła1945-, Mattiasson Bo, Kumar Ashok 1963- i Galaev Igor, red. Macroporous polymers: Production properties and biotechnological/biomedical applications. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaSurface modification of biomaterials: Methods, analysis and applications. Oxford: Woodhead Publishing Ltd, 2011.
Znajdź pełny tekst źródłaBegg, Rezaul. Computational intelligence in biomedical engineering. Boca Raton: CRC Press, 2008.
Znajdź pełny tekst źródłaNarayanaswamy, Ramaier. Optical Sensors: Industrial Environmental and Diagnostic Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Biomedical and chemical applications"
Morris, Michael D., i Gurjit S. Mandair. "Biomedical Applications of Raman Imaging". W Raman, Infrared, and Near-Infrared Chemical Imaging, 109–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470768150.ch6.
Pełny tekst źródłaRai, Avinash Kumar, Neha Kapoor, Jayesh Bhatt, Rakshit Ameta i Suresh C. Ameta. "Biomedical Applications of Carbon Nanotubes". W Chemistry and Industrial Techniques for Chemical Engineers, 21–48. Series statement: Innovations in physical chemistry: monographic series: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429286674-3.
Pełny tekst źródłaMoskal, Arkadiusz, i Tomasz R. Sosnowski. "Chemical Engineering in Biomedical Problems—Selected Applications". W Lecture Notes on Multidisciplinary Industrial Engineering, 307–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73978-6_21.
Pełny tekst źródłaSpinato, Cinzia, Cécilia Ménard-Moyon i Alberto Bianco. "Chemical Functionalization of Graphene for Biomedical Applications". W Functionalization of Graphene, 95–138. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527672790.ch4.
Pełny tekst źródłaThakur, Narsinh L., i Anshika Singh. "Chemical Ecology of Marine Sponges". W Marine Sponges: Chemicobiological and Biomedical Applications, 37–52. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2794-6_3.
Pełny tekst źródłaLiu, Jianbing, i Baoquan Ding. "Stimuli-Responsive DNA Nanostructures for Biomedical Applications". W Handbook of Chemical Biology of Nucleic Acids, 1–28. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1313-5_66-1.
Pełny tekst źródłaLiu, Jianbing, i Baoquan Ding. "Stimuli-Responsive DNA Nanostructures for Biomedical Applications". W Handbook of Chemical Biology of Nucleic Acids, 1913–40. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9776-1_66.
Pełny tekst źródłaPragatisheel i Jai Prakash. "Silver Nanostructures, Chemical Synthesis Methods, and Biomedical Applications". W Nanotechnology in the Life Sciences, 281–303. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44176-0_11.
Pełny tekst źródłaKatz, Evgeny, Joseph Wang, Jan Halámek i Lenka Halámková. "Enzyme Logic Systems: Biomedical and Forensic Biosensor Applications". W Springer Series on Chemical Sensors and Biosensors, 345–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/5346_2017_4.
Pełny tekst źródłaRajendran, Irudayaraj. "Typification of Chemical Compounds of Marine Sponge Metabolites". W Marine Sponges: Chemicobiological and Biomedical Applications, 167–256. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2794-6_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Biomedical and chemical applications"
Park, Sang Mok, i Young L. Kim. "Spectral super-resolution spectroscopy for biomedical applications". W Advanced Chemical Microscopy for Life Science and Translational Medicine 2021, redaktorzy Garth J. Simpson, Ji-Xin Cheng i Wei Min. SPIE, 2021. http://dx.doi.org/10.1117/12.2577799.
Pełny tekst źródłaMiller, J. Houston, Toni K. Laurila i Clemens F. Kaminski. "Biomedical OpticsDesign of a Confocal Raman Microscope". W Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/lacsea.2008.pdpjma14.
Pełny tekst źródłaBaldini, Francesco. "Optical fiber chemical sensors at IROE for medical applications". W Europto Biomedical Optics '93, redaktor Otto S. Wolfbeis. SPIE, 1994. http://dx.doi.org/10.1117/12.168749.
Pełny tekst źródłaTai, Ming-Fong, Jong-Kai Hsiao, Hon-Man Liu, Shio-Chao Lee i Shin-Tai Chen. "Synthesis Fe-Ni Alloy Magnetic Nanoparticles for Biomedical Applications". W ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17041.
Pełny tekst źródłaCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto i Ana Lilia Gonzalez-Yebra. "Wet chemical synthesis of quantum dots for medical applications". W European Conference on Biomedical Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ecbo.2015.95371h.
Pełny tekst źródłaCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto i Ana L. Gonzalez-Yebra. "Wet chemical synthesis of quantum dots for medical applications". W European Conferences on Biomedical Optics, redaktorzy J. Quincy Brown i Volker Deckert. SPIE, 2015. http://dx.doi.org/10.1117/12.2183183.
Pełny tekst źródłaVerga Scheggi, Anna M., i Francesco Baldini. "Chemical sensing with optical fibers and planar waveguides for biomedical applications". W Europto Biomedical Optics '93, redaktorzy Nathan I. Croitoru i Riccardo Pratesi. SPIE, 1994. http://dx.doi.org/10.1117/12.167309.
Pełny tekst źródłaMa, Lin, Weiwei Cai i Yan Zhao. "Biomedical OpticsInformation Content of Spectral Depolarization in Scattering Measurements". W Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/lacsea.2008.pdpjma15.
Pełny tekst źródła"Culture Potentials of Sea Cucumbers (Echinodermata: Holothuroidea) and their Biomedical applications". W International Conference on Chemical, Biological, and Environmental Sciences. International Academy Of Arts, Science & Technology, 2014. http://dx.doi.org/10.17758/iaast.a0514047.
Pełny tekst źródłaDantus, Marcos. "Femtosecond Lasers as Universal Sources for Chemical Sensing and Biomedical Applications". W Advanced Solid State Lasers. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/assl.2015.ath4a.6.
Pełny tekst źródłaRaporty organizacyjne na temat "Biomedical and chemical applications"
Martinez, Melissa. Lab Basics: Mini Centrifuges. ConductScience, czerwiec 2022. http://dx.doi.org/10.55157/cs20220601.
Pełny tekst źródłaGao, Jun. Biomedical Applications of Microfluidic Technology. Office of Scientific and Technical Information (OSTI), marzec 2014. http://dx.doi.org/10.2172/1126675.
Pełny tekst źródłaZimmerman, J. BMDO Technologies for Biomedical Applications. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1997. http://dx.doi.org/10.21236/ada338549.
Pełny tekst źródłaKuehl, Michael, Susan Marie Brozik, David Michael Rogers, Susan L. Rempe, Vinay V. Abhyankar, Anson V. Hatch, Shawn M. Dirk i in. Biotechnology development for biomedical applications. Office of Scientific and Technical Information (OSTI), listopad 2010. http://dx.doi.org/10.2172/1011213.
Pełny tekst źródłaChait, Richard, i Julius Chang. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2001. http://dx.doi.org/10.21236/ada396606.
Pełny tekst źródłaFelberg, Lisa E. Computational simulations and methods for biomedical applications. Office of Scientific and Technical Information (OSTI), lipiec 2017. http://dx.doi.org/10.2172/1488415.
Pełny tekst źródłaChait, Richard, Teri Thorowgood i Toni Marechaux. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2002. http://dx.doi.org/10.21236/ada407761.
Pełny tekst źródłaRadparvar, M. Imaging systems for biomedical applications. Final report. Office of Scientific and Technical Information (OSTI), czerwiec 1995. http://dx.doi.org/10.2172/192410.
Pełny tekst źródłaChait, Richard. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2000. http://dx.doi.org/10.21236/ada391253.
Pełny tekst źródłaPeer, Akshit. Periodically patterned structures for nanoplasmonic and biomedical applications. Office of Scientific and Technical Information (OSTI), sierpień 2017. http://dx.doi.org/10.2172/1505186.
Pełny tekst źródła