Gotowa bibliografia na temat „Biology - Electron Transfer”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biology - Electron Transfer”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biology - Electron Transfer"
Williams, R. J. P. "Electron transfer in biology". Molecular Physics 68, nr 1 (1.09.1989): 1–23. http://dx.doi.org/10.1080/00268978900101931.
Pełny tekst źródłaSledow, James N., i Ann L. Umbach. "Plant Mitochondrial Electron Transfer and Molecular Biology". Plant Cell 7, nr 7 (lipiec 1995): 821. http://dx.doi.org/10.2307/3870039.
Pełny tekst źródłaAgapakis, Christina M., i Pamela A. Silver. "Modular electron transfer circuits for synthetic biology". Bioengineered Bugs 1, nr 6 (listopad 2010): 413–18. http://dx.doi.org/10.4161/bbug.1.6.12462.
Pełny tekst źródłaMatyushov, Dmitry V. "Protein electron transfer: is biology (thermo)dynamic?" Journal of Physics: Condensed Matter 27, nr 47 (12.11.2015): 473001. http://dx.doi.org/10.1088/0953-8984/27/47/473001.
Pełny tekst źródłaBlankenship, Robert E. "Protein electron transfer". FEBS Letters 398, nr 2-3 (2.12.1996): 339. http://dx.doi.org/10.1016/0014-5793(97)81275-6.
Pełny tekst źródłaMoser, Christopher C., Christopher C. Page, Ramy Farid i P. Leslie Dutton. "Biological electron transfer". Journal of Bioenergetics and Biomembranes 27, nr 3 (czerwiec 1995): 263–74. http://dx.doi.org/10.1007/bf02110096.
Pełny tekst źródłaRivas, Maria Gabriela, Pablo Javier Gonzalez, Felix Martin Ferroni, Alberto Claudio Rizzi i Carlos Brondino. "Studying Electron Transfer Pathways in Oxidoreductases". Science Reviews - from the end of the world 1, nr 2 (16.03.2020): 6–23. http://dx.doi.org/10.52712/sciencereviews.v1i2.15.
Pełny tekst źródłaParsons, Roger. "Electron transfer in biology and the solid state". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 305, nr 1 (kwiecień 1991): 166. http://dx.doi.org/10.1016/0022-0728(91)85214-a.
Pełny tekst źródłaBerg, Hermann. "Electron and Proton Transfer in Chemistry and Biology." Bioelectrochemistry and Bioenergetics 32, nr 1 (wrzesień 1993): 97–98. http://dx.doi.org/10.1016/0302-4598(93)80027-r.
Pełny tekst źródłaHoltzhauer, Martin, i Peter Mohr. "Electron and Proton Transfer in Chemistry and Biology". Zeitschrift für Physikalische Chemie 186, Part_1 (styczeń 1994): 119. http://dx.doi.org/10.1524/zpch.1994.186.part_1.119.
Pełny tekst źródłaRozprawy doktorskie na temat "Biology - Electron Transfer"
Lee, Lester Y. C. "Transmembrane electron transfer in artificial bilayers /". Full text open access at:, 1985. http://content.ohsu.edu/u?/etd,86.
Pełny tekst źródłaDanyal, Karamatullah. "Electron Transfer and Substrate Reduction in Nitrogenase". DigitalCommons@USU, 2014. https://digitalcommons.usu.edu/etd/2181.
Pełny tekst źródłaChen, Dawei. "The Methylotrophic Bacterium W3A1 Electron Transfer Flavoprotein: Cloning, Expression, and Cofactor Binding Properties /". The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487931993468247.
Pełny tekst źródłaBatchelor-McAuley, Christopher. "Multi-electron transfer to and from organic molecules". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:14f0d2d6-da21-4041-9a5a-e0186fb36239.
Pełny tekst źródłaFeng, Yucheng. "Role of electrostatic interactions in regulating redox potentials and electron transfer of flavodoxin from Desulfovibrio Vulgaris (Hildenborough)/". The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487953204280307.
Pełny tekst źródłaRoberts, Lezah Wilette. "Effect of Netropsin on One-electron Oxidation of DNA". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7228.
Pełny tekst źródłaWallrapp, Frank. "Mixed quantum and classical simulation techniques for mapping electron transfer in proteins". Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/22685.
Pełny tekst źródłaThe focus of this PhD thesis lies on electron transfer (ET) processes, belonging to the simplest but most crucial reactions in biochemistry. Getting direct information of the forces driving the process and the actual electron pathway is not a trivial task. Such atomic and electronic detailed information, however, is very valuable in terms of a better understanding of the enzymatic cycle, which might lead, for example, to more efficient protein inhibitor design. The main objective of this thesis was the development of a methodology for the quantitative study of ET in biological systems. In this regard, we developed a novel approach to map long-‐range electron transfer pathways, called QM/MM e-‐Pathway. The method is based on a successive search for important ET residues in terms of modifying the QM region following the evolution of the spin density of the electron (hole) within a given transfer region. We proved the usefulness and applicability of the algorithm on the P450cam/Pdx complex, indicating the key role of Arg112 of P450cam and Asp48 of Pdx for its ET pathway, both being known to be important from the literature. Besides only identifying the ET pathways, we further quantified their importance in terms of electronic coupling of donor and acceptor incorporating the particular pathway residues. Within this regard, we performed two systematic evaluations of the underlying reasons for the influence of solvent and temperature onto electronic coupling in oligopeptide model systems. Both studies revealed that electronic coupling values strongly fluctuate throughout the molecular dynamics trajectories obtained, and the mechanism of electron transfer is affected by the conformational space the system is able to occupy. Combining both ET mapping and electronic coupling calculations, we finally investigated the electron transfer in the CcP/Cytc complex. Our findings indicate the key role of Trp191 being the bridge-‐localized state of the ET as well as the main pathway consisting of Ala194, Ala193, Gly192 and Trp191 between CcP and Cytc. Both findings were confirmed through the literature. Moreover, our calculations on several snapshots state a nongated ET mechanism in this protein complex. The methodology developed along this thesis, mapping ET pathways together with their evaluation through electronic coupling calculations, suggests a straightforward and promising approach to investigate long-‐range ET in proteins.
Abhijit, Saha. "Chemical Biology Approaches for the Molecular Recognition of DNA Double Helix". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199116.
Pełny tekst źródłaXiong, Ling. "Modification of the protein matrix around active- and inactive pheophytins by site-directed mutagenesis; affects on energy and electron transfer processes in photosystem II /". The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486549482671579.
Pełny tekst źródłaGhosh, Avik Kumar. "Charge migration and one-electron oxidation at adenine and thymidine containing DNA strands and role of guanine N1 imino proton in long range charge migration through DNA". Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-05132007-000502/.
Pełny tekst źródłaWartell, Roger, Committee Member ; Bunz, Uwe, Committee Member ; Doyle, Donald, Committee Member ; Fahrni, Christoph, Committee Member ; Schuster, Gary, Committee Chair.
Książki na temat "Biology - Electron Transfer"
1947-, Bertrand P., red. Long-range electron transfer in biology. Berlin: Springer-Verlag, 1991.
Znajdź pełny tekst źródłaS, Bendall D., red. Protein electron transfer. Oxford, UK: Bios Scientific Publishers, 1996.
Znajdź pełny tekst źródła1938-, Müller Achim, red. Electron and proton transfer in chemistry and biology. Amsterdam: Elsevier, 1992.
Znajdź pełny tekst źródłaJohnson, Michael K., R. Bruce King, Donald M. Kurtz, Charles Kutal, Michael L. Norton i Robert A. Scott, red. Electron Transfer in Biology and the Solid State. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1990-0226.
Pełny tekst źródła1941-, Ulstrup Jens, red. Electron transfer in chemistry and biology: An introduction to the theory. Chichester: Wiley, 1999.
Znajdź pełny tekst źródłaJoshua, Jortner, Bixon M, Prigogine I i Rice Stuart Alan 1932-, red. Electron transfer- from isolated molecules to biomolecules. New York: J. Wiley, 1999.
Znajdź pełny tekst źródła1908-, Gutmann Felix, red. Charge transfer complexes in biological systems. New York: M. Dekker, 1997.
Znajdź pełny tekst źródła1950-, Chakraborty T., red. Charge migration in DNA: Perspectives from physics, chemistry, and biology. Berlin: Springer, 2007.
Znajdź pełny tekst źródła1953-, Johnson Michael K., American Chemical Society. Division of Inorganic Chemistry. i Inorganic Chemistry Symposium (1989 : Athens, Ga.), red. Electron transfer in biology and the solid state: Inorganic compounds with unusual properties. Washington, DC: American Chemical Society, 1990.
Znajdź pełny tekst źródłaC, Papageorgiou George, Barber J. 1940-, Papa S, Unesco. European Expert Committee on Biomaterials and Biotechnology. Working Group IV. i Kentron Pyrēnikōn Ereunōn Dēmokritos, red. Ion interactions in energy transfer biomembranes. New York: Plenum Press, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Biology - Electron Transfer"
Rejou-Michel, Agnes, M. Ahsan Habib i John O’M Bockris. "Electron Transfer at Biological Interfaces". W Electrical Double Layers in Biology, 167–83. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8145-7_12.
Pełny tekst źródłaWilliams, R. J. P. "Overview of Biological Electron Transfer". W Electron Transfer in Biology and the Solid State, 3–23. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1990-0226.ch001.
Pełny tekst źródłaMorand, Larry Z., R. Holland Cheng, David W. Krogmann i Kwok Ki Ho. "Soluble Electron Transfer Catalysts of Cyanobacteria". W The Molecular Biology of Cyanobacteria, 381–407. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0227-8_12.
Pełny tekst źródłaTherien, Michael J., Jeffrey Chang, Adrienne L. Raphael, Bruce E. Bowler i Harry B. Gray. "Long-range electron transfer in metalloproteins". W Long-Range Electron Transfer in Biology, 109–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-53260-9_4.
Pełny tekst źródłaSiedow, James N. "Bioenergetics: The Mitochondrial Electron Transfer Chain". W The molecular biology of plant mitochondria, 281–312. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0163-9_8.
Pełny tekst źródłaBarrows, Julie N., i Michael T. Pope. "Intramolecular Electron Transfer and Electron Delocalization in Molybdophosphate Heteropoly Anions". W Electron Transfer in Biology and the Solid State, 403–17. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1990-0226.ch021.
Pełny tekst źródłaCammack, Richard, i Fraser MacMillan. "Electron Magnetic Resonance of Iron–Sulfur Proteins in Electron-Transfer Chains: Resolving Complexity". W Metals in Biology, 11–44. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1139-1_2.
Pełny tekst źródłaCabana, Leonardo A., i Kirk S. Schanze. "Photoinduced Electron Transfer Across Peptide Spacers". W Electron Transfer in Biology and the Solid State, 101–24. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1990-0226.ch005.
Pełny tekst źródłaBertrand, Patrick. "Application of electron transfer theories to biological systems". W Long-Range Electron Transfer in Biology, 1–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-53260-9_1.
Pełny tekst źródłaKuki, Atsuo. "Electronic tunneling paths in proteins". W Long-Range Electron Transfer in Biology, 49–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-53260-9_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Biology - Electron Transfer"
Yoshihara, Keitaro, Haridas Pal, Hideaki Shirota, Yutaka Nagasawa i Keisuke Tominaga. "Ultrafast Dynamics in Intermolecular Electron Transfer". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tha.6.
Pełny tekst źródłaOLIVEIRA, M. A., i W. J. BAADER. "EFFICIENCY OF ELECTRON-TRANSFER INDUCED CHEMIEXCITATION: A COMPARISON OF INTER- AND INTRAMOLECULAR PROCESSES". W Chemistry, Biology and Applications. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770196_0056.
Pełny tekst źródłaKomirisetty, Archana, Frances Williams, Aswini Pradhan i Meric Arslan. "Integrating Sensors With Nanostructures for Biomedical Applications". W ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93121.
Pełny tekst źródłaDrzewiecki, G., H. Katta, Andreas Pfahnl, David Bello i David Dicken. "Active and passive stethoscope frequency transfer functions: Electronic stethoscope frequency response". W 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE, 2014. http://dx.doi.org/10.1109/spmb.2014.7002962.
Pełny tekst źródłaKorshunova, A. N., i V. D. Lakhno. "Various regimes of charge transfer in a Holstein chain in a constant electric field depending on its intensity and the initial charge distribution". W Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.89.
Pełny tekst źródłaHackworth, S. A., Mingui Sun i R. J. Sclabassi. "Skin-electrode circuit model for use in optimizing energy transfer in volume conduction systems". W 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5334112.
Pełny tekst źródłaChen, Zhaoyang, Hongwei Hao, Luming Li i Jie Dong. "Wavelet Transform for Rabbit EEG with Vagus Nerve Electric Stimulation". W Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260698.
Pełny tekst źródłaChen, Zhaoyang, Hongwei Hao, Luming Li i Jie Dong. "Wavelet Transform for Rabbit EEG with Vagus Nerve Electric Stimulation". W Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397753.
Pełny tekst źródłaDatta, A., M. Elwassif i M. Bikson. "Bio-heat transfer model of transcranial DC stimulation: Comparison of conventional pad versus ring electrode". W 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333673.
Pełny tekst źródłaYu Zhao, M. Nandra, Chia-Chen Yu i Yu-chong Tai. "High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis". W 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6347503.
Pełny tekst źródła