Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: BIOLOGICAL ELEMENTS.

Artykuły w czasopismach na temat „BIOLOGICAL ELEMENTS”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „BIOLOGICAL ELEMENTS”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Vogel, John S., Jeffrey McAninch i Stewart P. H. T. Freeman. "Elements in biological AMS". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123, nr 1-4 (marzec 1997): 241–44. http://dx.doi.org/10.1016/s0168-583x(96)00679-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Williams, D. F. "Biological chemistry of the elements". Biomaterials 15, nr 3 (luty 1994): 239. http://dx.doi.org/10.1016/0142-9612(94)90073-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Paschal, Dan. "Biological monitoring of toxic elements". Journal of Chemical Health and Safety 15, nr 6 (listopad 2008): 8–13. http://dx.doi.org/10.1016/j.jchas.2007.10.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

ANDERSON, CHARLES H. "BASIC ELEMENTS OF BIOLOGICAL COMPUTATIONAL SYSTEMS". International Journal of Modern Physics C 05, nr 02 (kwiecień 1994): 313–15. http://dx.doi.org/10.1142/s0129183194000386.

Pełny tekst źródła
Streszczenie:
This paper explores some basic representational and implementation issues arising from the premise that cortical circuits operate on probability density functions to reason about analog quantities. Some insight is provided into why neurobiological systems can appear messy, while at the same time provide a rich and robust computational environment.
Style APA, Harvard, Vancouver, ISO itp.
5

Exley, Christopher. "The biological chemistry of the elements". Trends in Biochemical Sciences 17, nr 4 (kwiecień 1992): 165. http://dx.doi.org/10.1016/0968-0004(92)90327-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kazantzis, George. "The biological alkylation of heavy elements". Food and Chemical Toxicology 27, nr 8 (styczeń 1989): 550. http://dx.doi.org/10.1016/0278-6915(89)90055-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hickman, Carole S. "Biological Diversity: Elements of a Paleontological Agenda". PALAIOS 8, nr 4 (sierpień 1993): 309. http://dx.doi.org/10.2307/3515262.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

YAMANE, Yasuhiro. "Role of micro elements in biological systems." Japanese Journal of Health Physics 25, nr 3 (1990): 269–77. http://dx.doi.org/10.5453/jhps.25.269.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Haidamus, Susana Linhares, Maria Cristina Affonso Lorenzon i Ortrud Monika Barth. "Biological Elements and Residues in Brazilian Honeys". Greener Journal of Biological Sciences 9, nr 1 (12.03.2019): 8–14. http://dx.doi.org/10.15580/gjbs.2019.1.022119038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pu, Wangyang, Rong Zhang, Huifen Xu i Bin Liu. "Biological and Diagnostic Implications of Alu Elements". Gene and Gene Editing 1, nr 1 (1.03.2015): 16–25. http://dx.doi.org/10.1166/gge.2015.1003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

LIEBMAN, SHIRLEY A. "Ethical Elements of Chemical/Biological Defense Research". Annals of the New York Academy of Sciences 577, nr 1 Ethical Issue (grudzień 1989): 164–71. http://dx.doi.org/10.1111/j.1749-6632.1989.tb15062.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ivanenko, N. B., A. A. Ganeev, N. D. Solovyev i L. N. Moskvin. "Determination of trace elements in biological fluids". Journal of Analytical Chemistry 66, nr 9 (25.08.2011): 784–99. http://dx.doi.org/10.1134/s1061934811090036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Liu, Nianqing, Hanru Shao, Dongxin Ma, Yue Den, Pen Liu, Qin Xu, Jinyuan Zhao, A. M. I. Haque, M. Viviani i G. Moschini. "Positional distribution of elements in biological tissue". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 109-110 (kwiecień 1996): 368–71. http://dx.doi.org/10.1016/0168-583x(95)00940-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Tai, Peidong, Qing Zhao, Dan Su, Peijun Li i Frank Stagnitti. "Biological toxicity of lanthanide elements on algae". Chemosphere 80, nr 9 (sierpień 2010): 1031–35. http://dx.doi.org/10.1016/j.chemosphere.2010.05.030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Thayer, John S. "Review: Biological methylation of less-studied elements". Applied Organometallic Chemistry 16, nr 12 (2002): 677–91. http://dx.doi.org/10.1002/aoc.375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Aggarwal, Suresh K., Michael Kinter, Robert L. Fitzgerald, David A. Herold i W. W. Harrison. "Mass Spectrometry of Trace Elements in Biological Samples". Critical Reviews in Clinical Laboratory Sciences 31, nr 1 (styczeń 1994): 35–87. http://dx.doi.org/10.3109/10408369409084673.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ermakov, V. V., i L. N. Jovanović. "Biological Role of Trace Elements and Viral Pathologies". Geochemistry International 60, nr 2 (luty 2022): 137–53. http://dx.doi.org/10.1134/s0016702922020045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Kochman, Kazimierz. "New elements in modern biological theories of aging". Medical Research Journal 3, nr 3 (27.10.2015): 89–99. http://dx.doi.org/10.5603/fmc.2015.0002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Cao, Yangxiaolu, Allison Lopatkin i Lingchong You. "Elements of biological oscillations in time and space". Nature Structural & Molecular Biology 23, nr 12 (grudzień 2016): 1030–34. http://dx.doi.org/10.1038/nsmb.3320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Subramanian, R., i A. Sukumar. "Biological reference materials and analysis of toxic elements". Fresenius' Zeitschrift für analytische Chemie 332, nr 6 (styczeń 1988): 623–26. http://dx.doi.org/10.1007/bf00472655.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ahmad, S., A. Mannan i I. H. Qureshi. "Radiochemical analysis of toxic elements in biological materials". Journal of Radioanalytical and Nuclear Chemistry Articles 157, nr 1 (luty 1992): 57–63. http://dx.doi.org/10.1007/bf02039777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Quentin, Yves, i Gwennaele A. Fichant. "Fast Identification of Repetitive Elements in Biological Sequences". Journal of Theoretical Biology 166, nr 1 (styczeń 1994): 51–61. http://dx.doi.org/10.1006/jtbi.1994.1004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

TANAKA, Yu-ki, i Takafumi HIRATA. "Stable Isotope Composition of Metal Elements in Biological Samples as Tracers for Element Metabolism". Analytical Sciences 34, nr 6 (10.06.2018): 645–55. http://dx.doi.org/10.2116/analsci.18sbr02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

TANG, REN-HUAN. "ON THE BIOLOGICAL ELEMENT SPECTRUM IN ORGANISMS". International Journal of PIXE 06, nr 01n02 (styczeń 1996): 19–30. http://dx.doi.org/10.1142/s012908359600003x.

Pełny tekst źródła
Streszczenie:
A definition of biological essential elements was proposed. Their origin and function in human body were discussed. An excellent strain Sl of Tetrahymena, a kind of ciliates, has been used in this study to observe both stimulation or nutritious and toxic inhibition effects of elements located in s block, p block, d block, and f block in the periodic table, some regularity between the biological effects of these elements and their positions in the periodic table has been obtained. It is shown that a “spectrum of biological element equilibrium”, which exists in organism, can be exhibited in the periodic table designed in the three-dimensional space, if the abundance of biological elements or/and their bioavailability is used as the third z axis, a vertical line to the plane of the periodic table, and then the biological element spectrum shows that the exchanges of matter and energy between organism and surface environment of the earth have reached the dynamic equilibrium state. It seems that not only physical and chemical properties of different elements and compounds, but also their biological properties to a certain extent can be shown in the developed periodic table.
Style APA, Harvard, Vancouver, ISO itp.
25

Domnichev, Mykola, Maksym Malakhovskyi, Tetiana Nehrii, Oksana Nesterenko i Olha Blyzniukova. "ELEMENTS OF BIOLOGICAL RECLAMATION OF OPERATING MUD TAILINGS DUMPS". JOURNAL of Donetsk mining institute, nr 1 (2020): 172–80. http://dx.doi.org/10.31474/1999-981x-2020-1-172-180.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Tudan, Christopher, Frank X. Weber i Keith E. Levine. "The status of trace elements analysis in biological systems". Bioanalysis 3, nr 15 (sierpień 2011): 1695–97. http://dx.doi.org/10.4155/bio.11.171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Gürünlüoğlu, Hatice, i Gamze Erdoğdu. "Voltammetric Detection of Trace Elements in Various Biological Matrices". Sensor Letters 18, nr 10 (1.10.2020): 750–54. http://dx.doi.org/10.1166/sl.2020.4273.

Pełny tekst źródła
Streszczenie:
The purpose of this work is to analyse Cu, Zn, Pb and Cd simultaneously in biological samples such as serum, hair, tooth and bone using differential pulse stripping voltammetry (DPSV). Therefore, suitable sample preparation and experimental conditions are determined. Trace metal concentrations of biological samples are measured and compared with the literature values. Cu, Zn and Pb are found in hair, tooth and bone samples while Cu and Zn metals is found in serum sample.
Style APA, Harvard, Vancouver, ISO itp.
28

Milani, Liliana, Fabrizio Ghiselli i Marco Passamonti. "Mitochondrial selfish elements and the evolution of biological novelties". Current Zoology 62, nr 6 (25.03.2016): 687–97. http://dx.doi.org/10.1093/cz/zow044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ivannikova, L. A., V. M. Alifanov i L. A. Gugalinskaya. "Biological activity of chernozem on different elements of microtopography". Eurasian Soil Science 41, nr 13 (grudzień 2008): 1456–62. http://dx.doi.org/10.1134/s1064229308130152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Abdel Azim, Annalisa, Christian Pruckner, Philipp Kolar, Ruth-Sophie Taubner, Debora Fino, Guido Saracco, Filipa L. Sousa i Simon K. M. R. Rittmann. "The physiology of trace elements in biological methane production". Bioresource Technology 241 (październik 2017): 775–86. http://dx.doi.org/10.1016/j.biortech.2017.05.211.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Lobinski, R., C. Moulin i R. Ortega. "Imaging and speciation of trace elements in biological environment". Biochimie 88, nr 11 (listopad 2006): 1591–604. http://dx.doi.org/10.1016/j.biochi.2006.10.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bae, Jin-Han, Jungwoo Eo, Tae-Oh Kim i Joo Mi Yi. "Biological changes of transposable elements by radiation: recent progress". Genes & Genomics 37, nr 2 (13.12.2014): 125–33. http://dx.doi.org/10.1007/s13258-014-0256-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Yang, Caimei. "How biological elements interact with language The biolinguistic inquiry". Frontiers in Bioscience 25, nr 4 (2020): 930–47. http://dx.doi.org/10.2741/4841.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Milačič, Radmila. "Speciation of elements in biological, environmental and toxicological sciences". Environmental Science and Pollution Research 7, nr 4 (grudzień 2000): 246. http://dx.doi.org/10.1007/bf02987360.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Naleway, Steven E., Michael M. Porter, Joanna McKittrick i Marc A. Meyers. "Structural Design Elements in Biological Materials: Application to Bioinspiration". Advanced Materials 27, nr 37 (25.08.2015): 5455–76. http://dx.doi.org/10.1002/adma.201502403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Listantia, Nora, i Muhammad Sarjan. "Review of Chemical, Biological, and Epistemological Elements: Mamaq Tradition". Jurnal Penelitian Pendidikan IPA 9, nr 6 (30.06.2023): 196–203. http://dx.doi.org/10.29303/jppipa.v9i6.3731.

Pełny tekst źródła
Streszczenie:
Mamaq by the ancestors of the Sasak people was an activity of chewing betel nut, lime, betel leaf, and tobacco, and ending with shrinkage. Betel leaves contain glycosides, steroids, triterpenoids, flavonoids, tannins, and anthraquinones. These compounds contain antimicrobial activity that can fight Staphylococcus aureus, Escherichia coli, and Candida albicans fungi. Meanwhile, whiting is a strong base because it has a pH of 11-12.5. This is because in the mouth there is saliva which can maintain a pH of around 6.8. Saliva contains phosphate buffer solutions H2PO4- and HPO42-. And gambir contains a component in the form of catechins which function as antioxidants and antibacterials. The purpose of this research is to study philosophical values, especially epistemology, which investigates the origin, and composition of methods and knowledge related to mamaq philosophy and natural science concepts, especially chemistry, and compounds, and what reactions occur in the mamaq process that has not been revealed. The study uses the library method. From the results of thestudy, it was concluded that in addition to the philosophy in the ingredients for mamaq it can also be described the chemical compounds contained in the ingredients for mamaq, starting from whiting, green betel leaf, gambier, and areca nut.
Style APA, Harvard, Vancouver, ISO itp.
37

Ito, Hiroshi, Takuma Sugi i Ken H. Nagai. "Controllable Biological Rhythms and Patterns". Journal of Robotics and Mechatronics 34, nr 2 (20.04.2022): 253–56. http://dx.doi.org/10.20965/jrm.2022.p0253.

Pełny tekst źródła
Streszczenie:
One of the goals of soft robotics is to implement intelligent functions capable of processing complex information in soft materials. This is a noble goal, and we already have a familiar example, albeit not an artificial one, in a living organism. We believe that the intelligent biological elements acquired through the evolutionary process, which do not require an electricity supply or CPU, can be used for soft robotics. In this letter, we introduce three biological elements: proteins, squid, and nematodes, which show temporal or special patterns. We then discuss an attempt to apply them to soft robotics.
Style APA, Harvard, Vancouver, ISO itp.
38

Sveshnikova, Elena, Elena Romanova, Elyor Fazilov, Vasily Romanov, Elena Turaeva, Tatyana Shlenkina i Vaselina Lyubomirova. "The content of nutrients and biogenic elements in enriched artemia salina". E3S Web of Conferences 381 (2023): 02023. http://dx.doi.org/10.1051/e3sconf/202338102023.

Pełny tekst źródła
Streszczenie:
The work is devoted to the development of technology for enriching artemia with biologically active substances. The development of technology for enriching artemia with biologically active substances is important as an opportunity to obtain starter feeds for aquaculture with the desired properties. High content of high-grade protein, vitamins, amino acids, fatty acids, biogenic elements is of great importance. During artificial cultivation of artemia in a closed cycle in the conditions of aquaculture, there is a problem of sufficient accumulation of substances in its body that provide high nutritional and biological value. To solve this problem, we have developed a technology for enriching artemia with biologically active substances at the nauplium stage. The enrichment of artemia with vitamins, amino acids, probiotics, adaptogens, essential lipids allows us to create a new generation of bio-feeds containing a living symbiotic microbiota and ingredients capable of forming balanced complex of functional nutrition for fish. The aim of the study was to evaluate the biological and energy value, the content of proteins, fats, carbohydrates, moisture, ash, micro- and macroelements, heavy metals in artemia at different stages of ontogenesis against the background of its enrichment with a complex of biologically active substances. Intact and enriched cysts, intact and enriched decapsulated artemia eggs, enriched artemia nauplii were analyzed. It was found that against the background of enrichment with biologically active substances, the indicators of metabolic energy increased, the mass fraction of crude protein, the mass fraction of fat and the content of minerals and biogenic elements increased.
Style APA, Harvard, Vancouver, ISO itp.
39

Moore, Eli K., Daniella L. Martinez, Naman Srivastava, Shaunna M. Morrison i Stephanie J. Spielman. "Mineral Element Insiders and Outliers Play Crucial Roles in Biological Evolution". Life 12, nr 7 (24.06.2022): 951. http://dx.doi.org/10.3390/life12070951.

Pełny tekst źródła
Streszczenie:
The geosphere of primitive Earth was the source of life’s essential building blocks, and the geochemical interactions among chemical elements can inform the origins of biological roles of each element. Minerals provide a record of the fundamental properties that each chemical element contributes to crustal composition, evolution, and subsequent biological utilization. In this study, we investigate correlations between the mineral species and bulk crustal composition of each chemical element. There are statistically significant correlations between the number of elements that each element forms minerals with (#-mineral-elements) and the log of the number of mineral species that each element occurs in, and between #-mineral-elements and the log of the number of mineral localities of that element. There is a lesser correlation between the log of the crustal percentage of each element and #-mineral-elements. In the crustal percentage vs. #-mineral-elements plot, positive outliers have either important biological roles (S, Cu) or toxic biological impacts (Pb, As), while negative outliers have no biological importance (Sc, Ga, Br, Yb). In particular, S is an important bridge element between organic (e.g., amino acids) and inorganic (metal cofactors) biological components. While C and N rarely form minerals together, the two elements commonly form minerals with H, which coincides with the role of H as an electron donor/carrier in biological nitrogen and carbon fixation. Both abundant crustal percentage vs. #-mineral-elements insiders (elements that follow the correlation) and less abundant outsiders (positive outliers from the correlation) have important biological functions as essential structural elements and catalytic cofactors.
Style APA, Harvard, Vancouver, ISO itp.
40

Fritz-Albert Popp, Habil. "Some elements of homœopathy". British Homeopathic Journal 78, nr 03 (lipiec 1990): 161–66. http://dx.doi.org/10.1016/s0007-0785(05)80336-9.

Pełny tekst źródła
Streszczenie:
AbstractThe extremely high sensitivity of biological systems provides the key to understanding homœopathic ‘effects’. According to the classical analogon of a pendulum, the ‘coherent state’ in quantum physics are able to explain the simile principle as well as the potency rule as interrelated phenomena. The basic effect is always delocalization of the energy to such an extent that the physical proof gets more and more complicated the higher the efficacy becomes.
Style APA, Harvard, Vancouver, ISO itp.
41

Dridi, Sami. "AluMobile Elements: From Junk DNA to Genomic Gems". Scientifica 2012 (2012): 1–11. http://dx.doi.org/10.6064/2012/545328.

Pełny tekst źródła
Streszczenie:
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion thatAlusare biologically unimportant. Indeed,AluRNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases.AluRNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Style APA, Harvard, Vancouver, ISO itp.
42

Liu, Yuan, i Quanzhong Liu. "MicroRNAs as regulatory elements in psoriasis". Open Medicine 11, nr 1 (1.01.2016): 336–40. http://dx.doi.org/10.1515/med-2016-0063.

Pełny tekst źródła
Streszczenie:
AbstractPsoriasis is a chronic, autoimmune, and complex genetic disorder that affects 23% of the European population. The symptoms of Psoriatic skin are inflammation, raised and scaly lesions. microRNA, which is short, nonprotein-coding, regulatory RNAs, plays critical roles in psoriasis. microRNA participates in nearly all biological processes, such as cell differentiation, development and metabolism. Recent researches reveal that multitudinous novel microRNAs have been identified in skin. Some of these substantial novel microRNAs play as a class of posttranscriptional gene regulator in skin disease, such as psoriasis. In order to insight into microRNAs biological functions and verify microRNAs biomarker, we review diverse references about characterization, profiling and subtype of microRNAs. Here we will share our opinions about how and which microRNAs are as regulatory in psoriasis.
Style APA, Harvard, Vancouver, ISO itp.
43

Bengtsson, Gunnar. "Hypothetical Soil Thresholds for Biological Effects of Rare Earth Elements". Journal of Agricultural Science 13, nr 5 (15.04.2021): 1. http://dx.doi.org/10.5539/jas.v13n5p1.

Pełny tekst źródła
Streszczenie:
Objectives: Anthropogenic exposures to rare earth elements are poorly known and there is limited information on their toxicity and ecotoxicity. At the same time, world production of rare earth elements has doubled every 15 years over the last half-century, and high environmental concentrations of gadolinium and lanthanum have already been found. The current review aims to give some estimates of overall exposures and an initial in-depth appraisal of thresholds for effects on agricultural soil. The results are envisaged to be used in initial assessments of agricultural soil where the natural concentrations have been anthropogenically enhanced. Methods: An extensive review has been made of available scientific literature. Criteria have been established for the selection and analysis of eligible research. For instance, only effects on soils with vegetation have been included in the assessment of biological effects. A species sensitivity distribution based on 25% inhibition of organism functions has been used to establish thresholds for effects on soil organisms. Results: Around the year 2000, mean anthropogenic contributions of lanthanides in European soil regions were at most a few per cent of the total soil content. Since then, they should have increased considerably. The proposed hypothetical threshold for agricultural soils is 1125 mg total rare earth element per kg of soil. This threshold is about 8 times the natural soil concentration. Conclusions: If this result holds up to scrutiny, it implies that general anthropogenic pollution by rare earth elements will not be a threat to agricultural sustainability for the coming generation. A preliminary assessment suggests that this threshold would also protect humans from adverse effects due to secondary exposure.
Style APA, Harvard, Vancouver, ISO itp.
44

Nykyforov, V. V., V. Ya Moklyak, O. V. Novokhatko, Yu V. Ritchenko i A. B. Kulbachko. "Researching of chemical and biological elements in No-Till agrotechnology". Fundamental and Applied Soil Science 19, nr 1 (6.01.2019): 8–14. http://dx.doi.org/10.15421/041902.

Pełny tekst źródła
Streszczenie:
The richness of civilization is the soil which 99% of it produces food. There is more than 95% of the gene pool of living matter in the soil of planet. In modern conditions, there is a problem of rational use of soil as place for natural formations (edafotops) which are the most important components of biogeocenosis. The relevance of this work is that the soil as nutrient in the biosphere performs a unique function. The most important parameter is the fertility of the soil, which determines the basic properties of terrestrial ecosystems: efficient production and stability. Estimation of the main factors of fertilityed edafotop is a mandatory element of environmental monitoring. The purpose of this work is to study the dynamics of acidity and assessment of humus content in soil with sand and character changes on the number of microorganisms of major ecological-trophic groups and quantitative analysis of microalgae with typical chernozem processing and No-Till. Scientific novelty of results. For the first time the complex estimation of features humus formation in typical horizons layer was conducted and the dependence population of the complex microbial edafotop farm was installed on the territory farming systems of Semenivka district of Poltava region. For research were selected 17 soil samples in Semenivka district (Poltava region). The soil samples were selected in the localities which use standardized methods and techniques. The objects of study are samples chernozem typical from edafotop with different processing technology, in particular after making defekat sugar production, selected on the territory of the farm agrocenosis. Subject of research is dynamics of humus, microbiota and algae in soils that are traditionally handled by biotechnology and No-Till, and the impact a defekat of sugar production on the soil acidity. As a result of research settled the following tasks: 1) it was selected the samples of chernozem with varying technology soil processing; 2) it was estimated humus content by Tyurin (titrimetric) and acidity of soil samples by potentiometry; 3) it was investigated the feasibility of using a defekate after sugar production as fertilizer; 4) it was found the number of complex microbial studied soils; 5) it was set the factors in the formation of complex microbial soil; 6) it was set of environmental measures aimed at restoring of soil fertility. Soil samples were prepared for analysis by standard procedure. During the research was used a method of potentiometry to determine pH (degree of acidity of the soil solution). The concentration of humus titrimetric determined by using of chromium mixture and Mohr's salt (I. V. Tyurin method). Preliminary preparation of soil for microbiological analysis was performed by dispersing. For quantifying soil microorganisms was used the method of planting soil slurry into solid peptone-agarnutrient media and Zvyagintsev's scale. Statistical analysis of the results of research was carried out using MS Excel. The practical significance of the results is the scientific substantiation of ecological and economic profitability of introducing technology No-Till in Ukraine. This agrotechnology will preserve and restore the fertile layer of soil (improving its chemical, physical and biological properties, increasing content of organic matter in the soil), reduce or eliminate erosion of soil (no need to spend extra money to solve this problem), accumulate and retain the moisture in the soil, which in turn will reduce dependence the crop on climatic conditions and increase crop yields. It Is established that the use of No-Till system increased content humus, increased the number of microorganisms and soil microalgae, which can significantly affect the fertility of chernozem.
Style APA, Harvard, Vancouver, ISO itp.
45

Otmakhov, Vladimir I., i et al. "Periodic dependencies of distribution of chemical elements in biological objects". Vestnik Тomskogo gosudarstvennogo universiteta. Khimiya, nr 14 (1.12.2019): 6–25. http://dx.doi.org/10.17223/24135542/14/1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Behne, Dietrich. "Speciation of trace elements in biological materials: trends and problems". Analyst 117, nr 3 (1992): 555. http://dx.doi.org/10.1039/an9921700555.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Johnston, Elizabeth, i Michael Buckley. "Relative Protein Abundances and Biological Ageing in Whole Skeletal Elements". Journal of Proteome Research 20, nr 1 (22.10.2020): 538–48. http://dx.doi.org/10.1021/acs.jproteome.0c00555.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zeisler, Rolf, Susan F. Stone i Ronald W. Sanders. "Sequential determination of biological and pollutant elements in marine bivalves". Analytical Chemistry 60, nr 24 (15.12.1988): 2760–65. http://dx.doi.org/10.1021/ac00175a024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Gellein, Kristin, Trond Peder Flaten, Keith M. Erikson, Michael Aschner i Tore Syversen. "Leaching of Trace Elements from Biological Tissue by Formalin Fixation". Biological Trace Element Research 121, nr 3 (19.10.2007): 221–25. http://dx.doi.org/10.1007/s12011-007-8051-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Gorb, Stanislav N., i Michael Varenberg. "Mushroom-shaped geometry of contact elements in biological adhesive systems". Journal of Adhesion Science and Technology 21, nr 12-13 (styczeń 2007): 1175–83. http://dx.doi.org/10.1163/156856107782328317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii