Gotowa bibliografia na temat „BIOLOGICAL ELEMENTS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „BIOLOGICAL ELEMENTS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "BIOLOGICAL ELEMENTS"
Vogel, John S., Jeffrey McAninch i Stewart P. H. T. Freeman. "Elements in biological AMS". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123, nr 1-4 (marzec 1997): 241–44. http://dx.doi.org/10.1016/s0168-583x(96)00679-9.
Pełny tekst źródłaWilliams, D. F. "Biological chemistry of the elements". Biomaterials 15, nr 3 (luty 1994): 239. http://dx.doi.org/10.1016/0142-9612(94)90073-6.
Pełny tekst źródłaPaschal, Dan. "Biological monitoring of toxic elements". Journal of Chemical Health and Safety 15, nr 6 (listopad 2008): 8–13. http://dx.doi.org/10.1016/j.jchas.2007.10.001.
Pełny tekst źródłaANDERSON, CHARLES H. "BASIC ELEMENTS OF BIOLOGICAL COMPUTATIONAL SYSTEMS". International Journal of Modern Physics C 05, nr 02 (kwiecień 1994): 313–15. http://dx.doi.org/10.1142/s0129183194000386.
Pełny tekst źródłaExley, Christopher. "The biological chemistry of the elements". Trends in Biochemical Sciences 17, nr 4 (kwiecień 1992): 165. http://dx.doi.org/10.1016/0968-0004(92)90327-6.
Pełny tekst źródłaKazantzis, George. "The biological alkylation of heavy elements". Food and Chemical Toxicology 27, nr 8 (styczeń 1989): 550. http://dx.doi.org/10.1016/0278-6915(89)90055-0.
Pełny tekst źródłaHickman, Carole S. "Biological Diversity: Elements of a Paleontological Agenda". PALAIOS 8, nr 4 (sierpień 1993): 309. http://dx.doi.org/10.2307/3515262.
Pełny tekst źródłaYAMANE, Yasuhiro. "Role of micro elements in biological systems." Japanese Journal of Health Physics 25, nr 3 (1990): 269–77. http://dx.doi.org/10.5453/jhps.25.269.
Pełny tekst źródłaHaidamus, Susana Linhares, Maria Cristina Affonso Lorenzon i Ortrud Monika Barth. "Biological Elements and Residues in Brazilian Honeys". Greener Journal of Biological Sciences 9, nr 1 (12.03.2019): 8–14. http://dx.doi.org/10.15580/gjbs.2019.1.022119038.
Pełny tekst źródłaPu, Wangyang, Rong Zhang, Huifen Xu i Bin Liu. "Biological and Diagnostic Implications of Alu Elements". Gene and Gene Editing 1, nr 1 (1.03.2015): 16–25. http://dx.doi.org/10.1166/gge.2015.1003.
Pełny tekst źródłaRozprawy doktorskie na temat "BIOLOGICAL ELEMENTS"
Turcu, Eugen Florin. "Micropatterning and microelectrochemical characterisation of biological recognition elements". [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973183624.
Pełny tekst źródłaCasuso, Páramo Ignacio. "Electrical Characterization of Biological Elements by Atomic Force Microscopy". Doctoral thesis, Universitat de Barcelona, 2008. http://hdl.handle.net/10803/1519.
Pełny tekst źródłaKEY WORDS: AFM, Protein, Electrical, Biosensor
Winkler, Wade C. "RNA elements required for T box antitermination". The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1381251178.
Pełny tekst źródłaGRANT, TYRE D. "ASSESSING THE ENVIRONMENTAL AND BIOLOGICAL IMPLICATIONS OF VARIOUS ELEMENTS THROUGH ELEMENTAL SPECIATION USING INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY". University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1085590907.
Pełny tekst źródłaWorrasettapong, Watcharapong. "Ultratrace analysis and speciation studies on trace elements in environmental and biological samples". Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269381.
Pełny tekst źródłaHutchinson, Robert William. "Measurement of proteins and elements in biological samples by inductively coupled plasma mass spectrometry". Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505564.
Pełny tekst źródłaTetreault, Hannah M. "Transposable element contribution and biological consequence of genome size variation among wild sunflower species". Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32897.
Pełny tekst źródłaDivision of Biology
Mark C. Ungerer
Nuclear genome size varies immensely across flowering plants, spanning nearly 2400-fold. The causes and consequences of this vast amount of variation have intrigued biologists since it became clear that nuclear DNA amount did not reflect organismal complexity (the so-called C-value paradox). In my dissertation I utilize wild sunflower species in the genus Helianthus to examine the role of transposable elements (TEs), and in particular, long terminal repeat (LTR) retrotransposons, in generating genome size variation and whether variation in genome size influences aspects of plant growth and development across multiple organizational levels. The genus Helianthus provides an excellent system for studying these questions given four-fold variation in nuclear DNA content among diploid species and well-resolved phylogenetic relationships. Utilizing short-read Illumina data and sequence information from a diverse panel of Helianthus annuus (common sunflower) full-length LTR retrotransposons, I found that nuclear genome size in Helianthus species is positively correlated with repetitive DNA, and LTR retrotransposon subtypes generally show similar patterns in genomic abundance across taxa. Helianthus species with the largest genomes, however, exhibit large-scale amplification of a small number of LTR retrotransposon subtypes. Measuring aspects of plant growth and development at cell-, organ- and whole plant-levels in a panel of diploid Helianthus species that vary 4-fold in nuclear genome size, I found that genome size is negatively correlated with cell production rate, but that this negative correlation does not persist at higher organizational levels. Taken together, these results provide insights into the mechanisms contributing to genome size evolution in plants and the organizational level at which genome size may impact growth patterns and developmental rates. Genome expansion in wild sunflowers is influenced most significantly by amplification of a small number of TEs and not necessarily by a greater diversity of TEs. Genome size is strongly negatively correlated with cell production rate but this relationship weakens at higher organizational levels, such as that of organ and whole-plant development.
Yu, Liwen Schwartz Martin. "Computational studies on Group 14 elements (C, Si and Ge) in organometallic and biological compounds". [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3591.
Pełny tekst źródłaYu, Liwen. "Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds". Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3591/.
Pełny tekst źródłaRoberts, Sabrina B. "The roles of Correia Repeat Enclosed Elements in regulation of gene expression in the Neisseria spp". Thesis, Kingston University, 2017. http://eprints.kingston.ac.uk/41954/.
Pełny tekst źródłaKsiążki na temat "BIOLOGICAL ELEMENTS"
Holum, John R. Elements of general and biological chemistry. Wyd. 8. New York: J. Wiley, 1991.
Znajdź pełny tekst źródłaHolum, John R. Elements of general and biological chemistry. Wyd. 7. New York: Wiley, 1987.
Znajdź pełny tekst źródłaR, Holum John, red. Elements of general, organic, and biological chemistry. Wyd. 9. New York: Wiley, 1995.
Znajdź pełny tekst źródłaBoikess, Robert S. Elements of chemistry: General, organic, and biological. Englewood Cliffs, N.J: Prentice-Hall, 1986.
Znajdź pełny tekst źródłaHolum, John R. Elements of general, organic, and biological chemistry. Wyd. 9. New York: Wiley, 1995.
Znajdź pełny tekst źródła1944-, Subramanian K. S., Iyengar G. V, Okamoto Kensaku i International Chemical Congress of Pacific Basin Societies (1989 : Honolulu, Hawaii), red. Biological trace element research: Multidisciplinary perspectives. Washington, DC: American Chemical Society, 1991.
Znajdź pełny tekst źródłaDeborah, Charlesworth, red. Elements of evolutionary genetics. Greenwood Village, Colo: Roberts, 2011.
Znajdź pełny tekst źródłaIyengar, G. V. Elemental analysis of biological systems. Boca Raton, Fla: CRC Press, 1989.
Znajdź pełny tekst źródłaM, Herber R. F., i Stoeppler M. 1927-, red. Trace element analysis in biological specimens. Amsterdam [The Netherlands]: Elsevier, 1994.
Znajdź pełny tekst źródłaUzunov, Jordan Ivanov. Mesta river: Biological quality elements and ecological status. Sofia: Professor Marin Drinov Academic Publishing House, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "BIOLOGICAL ELEMENTS"
Eggins, Brian R. "Biological Elements". W Teubner Studienbücher Chemie, 13–30. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-05664-5_2.
Pełny tekst źródłaNordberg, Monica, i M. George Cherian. "Biological Responses of Elements". W Essentials of Medical Geology, 195–214. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4375-5_9.
Pełny tekst źródłaRietdorf, Jens, i Ernst H. K. Stelzer. "Special Optical Elements". W Handbook Of Biological Confocal Microscopy, 43–58. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_3.
Pełny tekst źródłaYuan, Ting, i Shiping Wang. "Pathogen-Responsive cis-Elements". W Plant Defence: Biological Control, 363–78. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1933-0_16.
Pełny tekst źródłaZumpe, Doris, i Richard P. Michael. "Biological Rhythms". W Notes on the Elements of Behavioral Science, 99–116. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1239-4_7.
Pełny tekst źródłaKiefer, Jürgen. "Elements of Photo- and Radiation Chemistry". W Biological Radiation Effects, 88–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-83769-2_5.
Pełny tekst źródłaSubramanian, K. S. "Trace Elements in Biological Fluids". W Biological Trace Element Research, 130–57. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0445.ch011.
Pełny tekst źródłaFränzle, Stefan. "The Biological System of Elements". W Chemical Elements in Plant and Soil: Parameters Controlling Essentiality, 1–15. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2752-8_1.
Pełny tekst źródłaLindh, Ulf. "Biological Functions of the Elements". W Essentials of Medical Geology, 129–77. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4375-5_7.
Pełny tekst źródłaStone, Susan F., Rolf Zeisler, Glen E. Gordon, Raphael P. Viscidi i Erich H. Cerny. "Trace Elements Associated with Proteins". W Biological Trace Element Research, 265–77. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0445.ch021.
Pełny tekst źródłaStreszczenia konferencji na temat "BIOLOGICAL ELEMENTS"
Bouhadjar, Younes, Markus Diesmann, Dirk J. Wouters i Tom Tetzlaff. "The speed of sequence processing in biological neuronal networks". W NICE '20: Neuro-inspired Computational Elements Workshop. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3381755.3381769.
Pełny tekst źródłaBaer, Wolfgang, i Rita Pizzi. "The case for biological quantum computer elements". W SPIE Defense, Security, and Sensing, redaktorzy Eric J. Donkor, Andrew R. Pirich i Howard E. Brandt. SPIE, 2009. http://dx.doi.org/10.1117/12.818218.
Pełny tekst źródłaKaneko, Kunihiko. "Network of Chaotic Elements". W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.thc1.
Pełny tekst źródłaMaas, Steve A., Benjamin J. Ellis, David S. Rawlins i Jeffrey A. Weiss. "Finite Element Modeling of Joint Contact Mechanics With Quadratic Tetrahedral Elements". W ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14556.
Pełny tekst źródłaSchroer, Christian G., Johannes Tuemmler, Til F. Guenzler, Bruno Lengeler, Walter H. Schroeder, Arnd J. Kuhn, Alexandre S. Simionovici, Anatoly A. Snigirev i Irina Snigireva. "Fluorescence microtomography: external mapping of elements inside biological samples". W International Symposium on Optical Science and Technology, redaktorzy F. P. Doty, H. Bradford Barber, Hans Roehrig i Edward J. Morton. SPIE, 2000. http://dx.doi.org/10.1117/12.410573.
Pełny tekst źródłaUshenko, Y. A., O. V. Dubolazov, A. O. Karachevtcev i N. I. Zabolotna. "The Mueller-matrix elements characteristic values of biological tissues". W International Conference on Applications of Optics and Photonics, redaktor Manuel F. Costa. SPIE, 2011. http://dx.doi.org/10.1117/12.891514.
Pełny tekst źródłaFerraro, P., V. Bianco, M. Paturzo, L. Miccio, P. Memmolo, F. Merola i V. Marchesano. "Biological elements carry out optical tasks in coherent imaging systems". W SPIE BiOS, redaktorzy Thomas G. Bifano, Joel Kubby i Sylvain Gigan. SPIE, 2016. http://dx.doi.org/10.1117/12.2210939.
Pełny tekst źródłaMišianiková, Anna, Katarína Kimáková i Andrea Lešková. "IMPLEMENTATION OF INTERDISCIPLINARY ELEMENTS IN BIOLOGICAL EDUCATION AT SECONDARY SCHOOL". W 13th International Conference on Education and New Learning Technologies. IATED, 2021. http://dx.doi.org/10.21125/edulearn.2021.1422.
Pełny tekst źródłaZhang, Yue, Chongyu Zhang, Da Guo, Xiaojun Huang, Junfa Xue i Jianming Ouyang. "Concentrations of Trace Elements in Different Types of Gallstones and Their Effects on Gallstone Formation". W International Conference on Biomedical and Biological Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/bbe-16.2016.51.
Pełny tekst źródłaKiel, Johnathan L., Jill E. Parker, Eric A. Holwitt i Jeeva Vivekananda. "DNA capture elements for rapid detection and identification of biological agents". W Defense and Security, redaktor Patrick J. Gardner. SPIE, 2004. http://dx.doi.org/10.1117/12.532043.
Pełny tekst źródłaRaporty organizacyjne na temat "BIOLOGICAL ELEMENTS"
Hackett, Kevin, Shlomo Rottem, David L. Williamson i Meir Klein. Spiroplasmas as Biological Control Agents of Insect Pests. United States Department of Agriculture, lipiec 1995. http://dx.doi.org/10.32747/1995.7613017.bard.
Pełny tekst źródłaMathews, Teresa J., William J. Rogers, Rock Vitale, John G. Smith, Craig C. Brandt, Mark J. Peterson i Neil Carriker. Interlaboratory Comparison for Digestion Methods, Analytical Methods, and Holding Times for the Analysis of Trace Elements in Biological Samples for the Kingston Fly Ash Recovery Project. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1126954.
Pełny tekst źródłaGurevitz, Michael, Michael E. Adams i Boaz Shaanan. Structural Elements and Neuropharmacological Features Involved in the Insecticidal Properties of an Alpha Scorpion Neurotoxin: A Multidisciplinary Approach. United States Department of Agriculture, sierpień 1995. http://dx.doi.org/10.32747/1995.7573061.bard.
Pełny tekst źródłaWalsh, Margaret, Peter Backlund, Lawrence Buja, Arthur DeGaetano, Rachel Melnick, Linda Prokopy, Eugene Takle, Dennis Todey i Lewis Ziska. Climate Indicators for Agriculture. United States. Department of Agriculture. Climate Change Program Office, lipiec 2020. http://dx.doi.org/10.32747/2020.7201760.ch.
Pełny tekst źródłaGalbraith, Mel, i Dan Blanchon. Biology is not Alone: The Interdisciplinary Nature of Biosecurity. Unitec ePress, wrzesień 2015. http://dx.doi.org/10.34074/pibs.rs12015.
Pełny tekst źródłaBuesseler, Ken O., Di Jin, Melina Kourantidou, David S. Levin, Kilaparti Ramakrishna i Philip Renaud. The ocean twilight zone’s role in climate change. Woods Hole Oceanographic Institution, luty 2022. http://dx.doi.org/10.1575/1912/28074.
Pełny tekst źródłaBasis, Najwa, i Tamar Shochat. Associations between religion and sleep: A systematic review of observational studies in the adult population. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, lipiec 2022. http://dx.doi.org/10.37766/inplasy2022.7.0057.
Pełny tekst źródłaAsvapathanagul, Pitiporn, Simone Galano, Andrea Calabrese, Mehran Rahmani, Maggie Ly, Daniela Flores, Michael Hernandez i Nicholas Banuelos. Experimental Investigation of the Self-Healing Potential of Bacteria for Sustainable Concrete Structures. Mineta Transportation Institute, maj 2023. http://dx.doi.org/10.31979/mti.2023.2239.
Pełny tekst źródłaShmulevich, Itzhak, Shrini Upadhyaya, Dror Rubinstein, Zvika Asaf i Jeffrey P. Mitchell. Developing Simulation Tool for the Prediction of Cohesive Behavior Agricultural Materials Using Discrete Element Modeling. United States Department of Agriculture, październik 2011. http://dx.doi.org/10.32747/2011.7697108.bard.
Pełny tekst źródłaGladney, E. S., B. T. O'Malley, I. Roelandts i T. E. Gills. Compilation of elemental concentration data for NBS clinical, biological, geological, and environmental Standard Reference Materials. Gaithersburg, MD: National Institute of Standards and Technology, listopad 1987. http://dx.doi.org/10.6028/nbs.sp.260-111.
Pełny tekst źródła