Gotowa bibliografia na temat „Biodegradation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biodegradation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Biodegradation"

1

Prapruddivongs, Chana, i Narongrit Sombatsompop. "Biodegradation and Anti-Bacterial Properties of PLA and Wood/PLA Composites Incorporated with Zeomic Anti-Bacterial Agent". Advanced Materials Research 747 (sierpień 2013): 111–14. http://dx.doi.org/10.4028/www.scientific.net/amr.747.111.

Pełny tekst źródła
Streszczenie:
Anti-bacterial and biodegradation activities of Poly (lactic acid) (PLA) and wood flour/PLA composites (WPLA) were investigated for the effect of anti-bacterial agent addition. Silver substituted Zeolite (commercially designated as Zeomic) was used as anti-bacterial agent in this study. Anti-bacterial activities were investigated through dynamic shake flask method accompanying with plate count agar (PCA) technique, against Staphylococcus aureus as testing bacteria. The results of anti-bacterial activity were reported by viable cell count. For biodegradation test, the degree and rate of biodegradations were evaluated from percentage of carbon conversion, the test being carried out under laboratory controlled-aerobic degradation environment at a temperature of 58±2°C. The results found that addition of Zeomic did not perform anti-bacterial activities for both the neat PLA and WPLA due to non-diffusivity of silver in Zeomic. For biodegradation test, both PLA and WPLA samples during incubation times of 21-60 days had shown considerable biodegradation rates as a result of chain scission by hydrolysis reaction and subsequent enzymatic-biodegradation by microorganism of PLA molecules. Regarding the effect of wood and Zeomic addition, it was found that introducing wood and Zeomic in PLA matrix tended to markedly increase the degree and rate of biodegradation of PLA and WPLA materials, whereby the PLA having 10%wt of wood with 1.5%wt of Zeomic had the most satisfactory biodegradation level and rate as a consequence of accelerated hydrolysis degradation from moisture in wood and Zeomic.
Style APA, Harvard, Vancouver, ISO itp.
2

White, Graham F. "Multiple interactions in riverine biofilms - surfactant adsorption, bacterial attachment and biodegradation". Water Science and Technology 31, nr 1 (1.01.1995): 61–70. http://dx.doi.org/10.2166/wst.1995.0015.

Pełny tekst źródła
Streszczenie:
Many organic pollutants, especially synthetic surfactants, adsorb onto solid surfaces in natural and engineered aquatic environments. Biofilm bacteria on such surfaces make major contributions to microbial heterotrophic activity and biodegradation of organic pollutants. This paper reviews evidence for multiple interactions between surfactants, biodegradative bacteria, and sediment-liquid interfaces. Biodegradable surfactants e.g. SDS, added to a river-water microcosm were rapidly adsorb to sediment surface and stimulated the indigenous bacteria to attach to the sediment particles. Recalcitrant surfactants and non-surfactant organic nutrients did not stimulate attachment Attachment of bacteria was maximal when biodegradation was fastest, and was reversed when biodegradation was complete. Dodecanol, the primary product of SDS-biodegradation, markedly stimulated attachment. When SDS was added to suspensions containing sediment and either known degraders or known non-degraders, only the degraders became attached, and attachment accelerated surfactant biodegradation to dodecanol. These cyclical cooperative interactions have implications for the design of biodegradability-tests, the impact of surfactant adjuvants on biodegradability of herbicides/pesticides formulated with surfactants, and the role of surfactants used to accelerate bioremediation of hydrocarbon-polluted soils.
Style APA, Harvard, Vancouver, ISO itp.
3

Kurtböke, Ipek, Irina Ivshina i Linda L. Blackall. "Microbial biodeterioration and biodegradation". Microbiology Australia 39, nr 3 (2018): 115. http://dx.doi.org/10.1071/ma18036.

Pełny tekst źródła
Streszczenie:
Microorganisms including bacteria and fungi can use a wide variety of organic compounds as their carbon and energy sources and exploit numerous options as electron acceptors facilitating their ability to live in diverse environments. Such microbial biodegradative activities can result in the bioremediation of polluted sites or cause biodeterioration. Biodegradation and biodeterioration are closely related processes, and they often involve the same organisms, processes and materials.
Style APA, Harvard, Vancouver, ISO itp.
4

Kumar Tiwari, Aadrsh, Manisha Gautam i Hardesh K. Maurya. "RECENT DEVELOPMENT OF BIODEGRADATION TECHNIQUES OF POLYMER". International Journal of Research -GRANTHAALAYAH 6, nr 6 (30.06.2018): 414–52. http://dx.doi.org/10.29121/granthaalayah.v6.i6.2018.1389.

Pełny tekst źródła
Streszczenie:
Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the too much use of plastics and increasing pressure being placed on capacity available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. This project reviews the biodegradation of biodegradable and also the conventional synthetic plastics, types of biodegradations of biodegradable polymers also use of a variety of “Recent development of biodegradation techniques” for the analysis of degradation in vitro.
Style APA, Harvard, Vancouver, ISO itp.
5

Lee, Hyun Min, Hong Rae Kim, Eunbeen Jeon, Hee Cheol Yu, Sukkyoo Lee, Jiaojie Li i Dae-Hwan Kim. "Evaluation of the Biodegradation Efficiency of Four Various Types of Plastics by Pseudomonas aeruginosa Isolated from the Gut Extract of Superworms". Microorganisms 8, nr 9 (2.09.2020): 1341. http://dx.doi.org/10.3390/microorganisms8091341.

Pełny tekst źródła
Streszczenie:
Plastic waste worldwide is becoming a serious pollution problem for the planet. Various physical and chemical methods have been tested in attempts to remove plastic dumps. However, these have usually resulted in secondary pollution issues. Recently, the biodegradation of plastic by fungal and bacterial strains has been spotlighted as a promising solution to remove plastic wastes without generating secondary pollution. We have previously reported that a Pseudomonas aeruginosa strain isolated from the gut of a superworm is capable of biodegrading polystyrene (PS) and polyphenylene sulfide (PPS). Herein, we demonstrate the extraordinary biodegradative power of P. aeruginosa in efficiently depolymerizing four different types of plastics: PS, PPS, polyethylene (PE) and polypropylene (PP). We further compared biodegradation rates for these four plastic types and found that PE was biodegraded fastest, whereas the biodegradation of PP was the slowest. Moreover, the growth rates of P. aeruginosa were not always proportional to biodegradation rates, suggesting that the rate of bacterial growth could be influenced by the composition and properties of intermediate molecules produced during plastic biodegradation, and these may supply useful cellular precursors and energy. In conclusion, an initial screening system to select the most suitable bacterial strain to biodegrade certain types of plastic is particularly important and may be necessary to solve plastic waste problems both presently and in the future.
Style APA, Harvard, Vancouver, ISO itp.
6

Chávez Pasco, Gaudhy Sujhey, Carlos Eduardo Villanueva Aguilar, Rafael Yerko Zevallos Bueno i Robinson León Zuloeta. "BIODEGRADATIVE EFFICIENCY OF CYANIDE BY Pseudomonas sp." REBIOL 42, nr 2 (19.04.2023): 85–90. http://dx.doi.org/10.17268/rebiol.2022.42.02.03.

Pełny tekst źródła
Streszczenie:
Pseudomonas sp. is one of the bacteria widely studied in environmental management due to its biodegradative capacity, in this sense the objective of the present investigation was to evaluate the biodegradative efficiency of cyanide by Pseudomonas sp. at different incubation times. The study had a design, as a control group a physiological outlet solution and a bioreactor with a bubble column were used, each bioreactor contained 450 ml of MBSMG at a concentration of 500 ppm of cyanide and a pH of 8, with an inoculum at a concentration of 1.5 x 108 cells per milliliter. The cyanide concentration was assessed by titration with AgNO3 and KI. The results obtained show a cyanide biodegradation efficiency of 92.3% at 3 days of incubation, 85.8% at 7.5 days and 75.9% at 12 days; also finding an inverse correlation of 0.985 between the biodegradation efficiency and the incubation time of the bacteria by means of the Pearson Correlation. It is concluded that the highest biodegradative efficiency of Pseudomonas sp. after 3 days of incubation.
Style APA, Harvard, Vancouver, ISO itp.
7

Nelson, M. J., S. O. Montgomery, W. R. Mahaffey i P. H. Pritchard. "Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway." Applied and Environmental Microbiology 53, nr 5 (1987): 949–54. http://dx.doi.org/10.1128/aem.53.5.949-954.1987.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Buswell, John A., Etienne Odier i T. Kent Kirk. "Lignin Biodegradation". Critical Reviews in Biotechnology 6, nr 1 (styczeń 1987): 1–60. http://dx.doi.org/10.3109/07388558709086984.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Romanovskiy, M. G., R. V. Shchekalev i V. V. Korovin. "Humus Biodegradation". Bulletin of Higher Educational Institutions. Lesnoi Zhurnal (Forestry journal), nr 4 (20.06.2017): 187–96. http://dx.doi.org/10.17238/issn0536-1036.2017.4.187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zaikov, G. E., K. Z. Gumargalieva, A. Ya Polishchuk, A. A. Adamyan i T. I. Vinokurova. "Polyolefin Biodegradation". International Journal of Polymeric Materials 44, nr 1-2 (sierpień 1999): 107–33. http://dx.doi.org/10.1080/00914039908012139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Biodegradation"

1

Kurt, Zohre. "Biodegradation of chlorinated compounds at interfaces and biodegradation of 4-nitroaniline". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50111.

Pełny tekst źródła
Streszczenie:
Most microbial activity in nature takes place at interfaces where redox discontinuities are present. Organic pollutants in groundwater encounter oxic/anoxic interfaces when they emerge to surface water bodies or volatilize above the plume. Such oxic/anoxic interfaces are key habitats for aerobic bacteria and are in turn created by the bacteria that degrade organic electron donors. In the absence of biodegradation, synthetic pollutants can migrate from the plume and impact a variety of receptors. The aims of our study were to determine whether microbes at oxic/anoxic interfaces can use synthetic chemicals as electron donors and protect the overlying vadose zone or surface water from groundwater pollutants. The approach was to design columns representing the interfaces and measure activities of the microbial communities responsible for the biodegradation of synthetic compounds.Taken together the above studies established clearly that contaminants recalcitrant under anaerobic conditions but degradable under aerobic conditions can be biodegraded at the narrow oxic/anoxic interface resulting in the protection of the overlying soil or water. The findings provide the basis for new approaches to natural attenuation that can serve to dramatically reduce the cost of bioremediation actions. Synthetic chemicals are widespread in the environment because of their extensive use in industry. These chemicals were recalcitrant until their microbial degradation pathways evolved. Currently the biodegradation pathways of many synthetic chemicals are known and serve as the basis for bioremediation strategies. The second part of the research described here involved discovery of the aerobic degradation pathway of a dye additive: 4-nitroaniline (4NA). Annotation of the whole genome sequence coupled with assays and supported with cloned enzymes revealed that the 4NA biodegradation pathway contains two monooxygenase steps prior to ring cleavage. Because nitroaniline degradation was not previously understood our work advanced the understanding of metabolic diversity in degradation of amino and nitro compounds by providing enzymes with unique activities.
Style APA, Harvard, Vancouver, ISO itp.
2

Marino, Fabien. "Biodegradation of paraffin wax". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0030/MQ50640.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Marino, Fabien. "Biodegradation of paraffin wax". Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21312.

Pełny tekst źródła
Streszczenie:
Nineteen bacteria were tested for growth on paraffin wax as the sole source of carbon. Paraffin wax is a solid mixture of hydrocarbons including n-alkanes ranging from C18H38 to C37H 76. Of the nineteen bacteria tested, four bacteria (Arthrobacter paraffineus ATCC 19558, Mycobacterium OFS, Pseudomonas fluorescens Texaco and Rhodococcus IS01) grew well on paraffin wax. However, only one, Rhodococcus IS01, was found to rapidly and completely degrade a mixture of paraffin wax liquefied with hexadecane using the Self-Cycling Fermentation (SCF) technology. This strain was able to degrade n-alkanes ranging from dodecane to heptatriacontane as well as highly branched hydrocarbons such as pristane and hepta-methyl-nonane.
Kinetic studies performed with Rhodococcus IS01 growing on mixtures of n-alkanes showed that the hydrocarbons were degraded in ascending order of chain length: shortest to longest chain. The short lag period between the biodegradation of the different n-alkanes suggested that the growth of Rhodococcus IS01 on mixtures of n-alkanes followed some form of diauxie. Further kinetic studies were conducted growing Rhodococcus IS01 on individual and various mixtures of n-alkanes; these showed that the initial first-order oxidation constant decreased with increasing chain length. This trend is suspected to be due to an enzyme specificity constraint rather than to a mass transfer limitation. In addition, it was also observed that the maximum specific growth rate constant (mumax) increased with increasing n-alkane chain length.
Rhodococcus IS01 was also found to produce a cell-associated biosurfactant.
Style APA, Harvard, Vancouver, ISO itp.
4

McGrath, John W. "The biodegradation of organophosphonates". Thesis, Queen's University Belfast, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295419.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhong, Sheng-Ping. "Biodegradation of medical polymers". Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333769.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Arshad, Khubaib, i Muhammad Mujahid. "Biodegradation of Textile Materials". Thesis, Högskolan i Borås, Institutionen Textilhögskolan, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-20862.

Pełny tekst źródła
Streszczenie:
In this research work different textile materials were buried in soil and their biodegrading pattern will be studied after different specific period of times.
Program: Master Programme in Textile Technology
Style APA, Harvard, Vancouver, ISO itp.
7

Malandra, Lida 1975. "Biodegradation of winery wastewater". Thesis, Stellenbosch : University of Stellenbosch, 2003. http://hdl.handle.net/10019.1/16385.

Pełny tekst źródła
Streszczenie:
Thesis (MSc)--University of Stellenbosch, 2003.
ENGLISH ABSTRACT: Large volumes of wastewater are generated annually during the grape harvest season from various processing and cleaning operations at wineries, distilleries and other wine-related industries. South African regulatory bodies dictate that wastewater should have a pH of 5.5 to 7.5 and a chemical oxygen demand (COD) lower than 75 mg/L. However, winery wastewater has a typical pH of 4 to 5 and a COD varying between 2 000 and 12 000 mg/L. Urban wineries channel the wastewater to local sewage treatment facilities and are often heavily fined for exceeding governmental requirements. Rural wineries usually have little or no treatment operations for their wastewater and it is often irrigated onto crops, which may result in environmental pollution and contamination of underground water resources. Various criteria are important in choosing a wastewater treatment system, such as an ecofriendly process that is flexible to withstand various concentration loads and characteristics, requiring low capital and operating costs, minimal personal attention and do not require too much land. In this study, a large variation in COD, pH and chemical composition of the winery wastewater was observed that could be related to varying factors such as the harvest load, operational procedures and grape variety. Wastewater from destemming and pressing operations contained higher concentrations of glucose, fructose and malic acid, which originated from the grape berries. The fermentable sugars (glucose and fructose) contributed to almost half of the COD with a smaller contribution from ethanol and acetic acid. The low pH can be ascribed to relative high concentrations of organic acids in the wastewater. The efficacy of biological treatment systems depends strongly on the ability of microorganisms to form biofilm communities that are able to degrade the organic compounds in the wastewater. Preliminary identification of microorganisms that naturally occur in winery wastewater indicated the presence of various bacterial and yeast species that could be effective in the biological treatment of the wastewater. When evaluated as pure cultures under aerobic conditions, some of the yeast isolates effectively reduced the COD of a synthetic wastewater, whereas the bacterial isolates were ineffective. The most effective yeast isolates were identified as Pichia rhodanensis, Kloeckera apiculata, Candida krusei and Saccharomyces cerevisiae. Our search for cost-effective biological treatment systems led to the evaluation of a Rotating Biological Contactor (RBC) for the treatment of winery wastewater. The RBC was evaluated on a laboratory scale with 10% (v/v) diluted grape juice and inoculated with a mixed microbial community isolated from winery wastewater. The results showed a reduction in the COD that improved with an extended retention time. Evaluation of the RBC on-site at a local winery during the harvest season resulted on average in a 41% decrease in COD and an increase of 0,75 pH units. RFLP analysis of the biofilm communities within the RBC confirmed a population shift in both the bacterial and fungal species during the evaluation period. The most dominant yeast isolates were identified with 18S rDNA sequencing as Saccharomyces cerevisiae, Candida intermedia, Hanseniaspora uvarum and Pichia membranifaciens. All these species are naturally associated with grapes and/or water and with the exception of Hanseniaspora uvarum, they are able to form either simple or elaborate pseudohyphae.
AFRIKAANSE OPSOMMING: Groot hoeveelhede afloopwater word jaarliks gedurende die druiwe-oestyd deur verskeie prosessering- en skoonmaakoperasies deur wynkelders, distilleer- en ander wynverwante industrieë gegenereer. Suid-Afrikaanse beheerliggame vereis dat afloopwater ‘n pH van 5.5 tot 7.5 en ‘n chemiese suurstofbehoefte (COD) van minder as 75 mg/l moet hê. Kelderafloopwater het egter gewoonlik ‘n pH van 4 tot 5 en ‘n COD van 2 000 tot 12 000 mg/L. Stedelike wynkelders voer die afloopwater na ń plaaslike rioolsuiweringsaanleg wat dikwels tot swaar boetes vir oortreding van die wetlike vereistes lei. Plattelandse wynkelders het gewoonlik min of geen behandelingsprosesse vir hul afloopwater nie en gebruik die water dikwels vir gewasbesproeiing, wat tot omgewingsbesoedeling en kontaminasie van ondergrondse waterbronne kan lei. Verskeie kriteria is belangrik in die keuse van ‘n waterbehandelingstelsel, byvoorbeeld ‘n omgewingsvriendelike proses wat verskillende konsentrasieladings en samestellings kan hanteer, ‘n lae kapitaal- en bedryfskoste en minimale persoonlike aandag vereis en min ruimte benodig. Hierdie studie het getoon dat kelderafloopwater ‘n groot variasie in COD, pH en chemiese samestelling het wat met wisselende faktore soos die oeslading, operasionele prosesse en selfs die druifkultivar verband kan hou. Afloopwater van ontstingeling- en parsoperasies het hoër konsentrasies glukose, fruktose en appelsuur wat van die druiwekorrels afkomstig is. Die fermenteerbare suikers (glukose en fruktose) dra tot amper 50% van die COD by, met ‘n kleiner bydrae deur etanol en asynsuur. Die lae pH kan grootliks aan organiese sure in die afloopwater toegeskryf word. Die effektiwiteit van biologiese behandelingstelsels steun sterk op die vermoë van mikroorganismes om biofilmgemeenskappe te vorm wat die organiese verbindings in die afloopwater kan afbreek. Voorlopige identifikasie van mikro-organismes wat natuurlik in wynafloopwater voorkom, het die teenwoordigheid van verskeie bakteriese en gisspesies aangedui. Evaluering van hierdie isolate onder aërobiese toestande het getoon dat sommige van die gis-isolate die COD van ‘n sintetiese afloopwater effektief kon verlaag, terwyl die bakteriese isolate oneffektief was. Die mees effektiewe gis-isolate is as Pichia rhodanensis, Kloeckera apiculata, Candida krusei en Saccharomyces cerevisiae geïdentifiseer. Ons soektog na ‘n koste-effektiewe biologiese behandelingsisteem het tot die evaluering van ‘n ‘Rotating Biological Contactor’ (RBC) vir die behandeling van afloopwater gelei. Die RBC is op laboratoriumskaal met 10% (v/v) verdunde druiwesap geëvalueer en met ‘n gemengde mikrobiese gemeenskap wat uit afloopwater geïsoleer is, innokuleer. Die resultate het ‘n verlaging in die COD getoon wat met ‘n langer retensietyd verbeter het. Evaluering van die RBC by ‘n plaaslike wynkelder gedurende die oesseisoen het gemiddeld ‘n verlaging van 41% in die COD en ‘n verhoging van 0,75 pH eenhede getoon. RPLP analise van die biofilmgemeenskappe in die RBC het ‘n bevolkingsverskuiwing in beide die bakteriese en swamspesies aangetoon. Die mees dominante gisspesies is met 18S rDNA volgordebepaling as Saccharomyces cerevisiae, Candida intermedia, Hanseniaspora uvarum en Pichia membranifaciens geïdentifiseer. Al hierdie spesies word gewoonlik met druiwe en/of water geassosieer en is, met die uitsondering van Hanseniaspora uvarum, in staat om òf eenvoudige òf komplekse pseudohife te vorm.
Style APA, Harvard, Vancouver, ISO itp.
8

Tikoo, Vidya. "Microalgal biodegradation of pentachlorophenol". Thesis, University of the West of England, Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319256.

Pełny tekst źródła
Streszczenie:
Pentachlorophenol (PCP) is a chlorophenol with a pronounced biocidal activity that has led to its use in a number of applications. It was introduced in the 1930s as a preservative for timber and lumber and since then has found wide use as a biocide in agricultural and industrial applications. Many different physical, chemical and biological methods have been tried for the removal of PCP from wastewater. However, using microalgae for the removal of PCP and other organochlorine compounds from water may prove to be a cheaper alternative and give complete degradation of the compounds. The aim of this project was to study the efficiency of microalgae to degrade PCP. An algal strain named VT -1 and a bacterial strain named AT -14 were isolated from PCP containing conditions in the laboratory. The growth of VT -1 in the presence of PCP was compared with Chlorella emersonii and Chlorella vulgaris in two different autotrophic media. It was observed that VT-1 had the highest IC50 value of 25-26mg }-l PCP and EC50 value of 11.3mg }-1 PCP in S&K medium. With glucose as an additional carbon source the IC50 value for VT-1 in S&K medium was 29-30mg t 1 PCP. Bacterium AT-14 could grow in the presence of PCP, only with glucose as a carbon source. Mineralization of PCP by VT -1 and the two Chlorella strains was compared by using 14C_PCp. With all the three algae exposed to 14C_PCp, only VT-1 showed release of 14C02, which was evidence of mineralization of PCP by VT-1 which occurred only in the presence of light. Bacterium AT-14 did not produce 14C02. However, the consortium of VT-1 and AT-14 showed enhanced 14C02 evolution in the presence of glucose. The release of chloride ions from PCP can also indicate PCP dehalogenation and degradation. The evolution of 14C02 lagged behind chloride release (90 %) indicating that dechlorination of PCP could be the first step in its biodegradation. Breakdown of PCP was also followed by its extraction from the cells and medium. Normally dichloromethane (DCM) was used to extract PCP. The changes in the label extracted in DCM and iso-butanol were studied under different light condjtions, which showed that the 14C counts in DCM reduced and those in iso-butanol extract increased with time. The 14C counts in the iso-butanol extract could be a metabolite of PCP which is more hydrophilic. VT-1 appeared not to degrade PCP completely, since only 15% of 14C was recovered as 14C02. It appears that intermediates are formed which are distributed in the growth medium and in the biomass. It can thus be concluded that VT -1 is tolerant of PCP, appears to dechlorinate PCP and then releases some part of it as CO2.
Style APA, Harvard, Vancouver, ISO itp.
9

Shearer, Brad David. "Enhanced Biodegradation in Landfills". Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/33215.

Pełny tekst źródła
Streszczenie:
The objective of this paper is to evaluate the effectiveness of leachate recirculation and bioreactor landfills at enhancing biodegradation, and to optimize the operation of a bioreactor. Waste Management has been examining leachate recirculation landfills for several years. Samples of Municipal Solid Waste (MSW) from existing leachate recirculation (LR) landfills were collected and analyzed for several physical and biochemical properties. These parameters of interest were moisture content, pH, density, temperature, volatile solids, cellulose/lignin ratios, and biological methane potential (BMP). Leachate recirculation increased the dry density 55% faster and decreased the BMP 125% more rapidly. Moisture content was the biggest factor influencing overall degradation. Therefore, leachate reciculation effectively increases biodegradation of MSW in landfills. Waste Management built a pilot-scale bioreactor in Franklin, WI, which was sampled for one year. It contained a bioreactor side and a control side. The volatile solids, cellulose, and BMP degradation rates for the bioreactor were increased by 56%, 87%, and 271% versus the control, respectively. Moisture content was the biggest factor influencing overall degradation. The column study is designed to optimize three parameters under the control of an operator: moisture content, initial aeration period, and biosolids addition. The optimum moisture content is above 45%, but it is not safe to operate heavy equipment on refuse with greater than 45% moisture. Initial aeration did not speed up the overall degradation, but it did shorten the acidogenic phase. Finally, biosolids did not have a significant effect on degradation rates. The columns maintained an average temperature of 70oF.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
10

PAULUS, SYLVIE. "Biodegradation de steranes petroliers". Université Louis Pasteur (Strasbourg) (1971-2008), 1993. http://www.theses.fr/1993STR13041.

Pełny tekst źródła
Streszczenie:
La biodegradation in vitro du 5-alpha-cholestane, par une souche de bacteries du sol du genre nocardia, a permis d'identifier plusieurs intermediaires de degradation par comparaison avec des standards. Ils resultent d'une part, de la degradation de la chaine laterale par un processus analogue a la beta-oxydation des acides gras, et d'autre part, d'une 4-alpha-hydroxylation. Les intermediaires caracterises precedemment ont ete recherches dans des echantillons biodegrades de sol pollue par du petrole. Differents isomeres du 20-carboxy-5-alpha-pregnane ont ete identifies. Si les acides carboxyliques proviennent bien de la degradation des steranes en c27 correspondants, alors les microorganismes ne sont pas particulierement selectifs au niveau de la stereochimie des steranes en c27 dans notre cas, et suivent tous le meme processus de biodegradation qui est celui mis en evidence dans l'etude precedente. Enfin, nous avons tente d'elucider la structure de molecules inconnues, des secosteranes, presentes dans un sediment italien. Si aucun des secosteranes synthetises ne correspond aux composes sedimentaires, les spectres de masse des 1,10-secosteranes comportent cependant de nombreuses analogies avec les composes sedimentaires
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Biodegradation"

1

Betts, W. B., red. Biodegradation. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

service), SpringerLink (Online. Biodegradation. [Dordrecht]: Kluwer Academic Publishers, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Alexander, Martin. Biodegradation and bioremediation. San Diego: Academic Press, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Swisher, R. D. Surfactant biodegradation. Wyd. 2. New York: M. Dekker, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Saha, Badal C., i Kyoshi Hayashi, red. Lignocellulose Biodegradation. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0889.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

1949-, Saha Badal C., Hayashi Kyoshi 1952-, American Chemical Society. Cellulose and Renewable Materials Division i American Chemical Society Meeting, red. Lignocellulose biodegradation. Washington, DC: American Chemical Society, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wackett, Lawrence P., i C. Douglas Hershberger. Biocatalysis and Biodegradation. Washington, DC, USA: ASM Press, 2001. http://dx.doi.org/10.1128/9781555818036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Singh, Ajay, i Owen P. Ward, red. Biodegradation and Bioremediation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06066-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Beek, B., red. Biodegradation and Persistance. Berlin/Heidelberg: Springer-Verlag, 2001. http://dx.doi.org/10.1007/10508767.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bellon-Maurel, V., A. Calmon-Decriaud, V. Chandrasekhar, N. Hadjichristidis, J. W. Mays, S. Pispas, M. Pitsikalis i F. Silvestre, red. Blockcopolymers - Polyelectrolytes - Biodegradation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-69191-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Biodegradation"

1

Hopper, D. J. "Aspects of the Aerobic Degradation of Aromatics by Microorganisms". W Biodegradation, 1–14. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

McCarthy, A. J., i A. S. Ball. "Actinomycete Enzymes and Activities Involved in Straw Saccharification". W Biodegradation, 185–99. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Dart, R. K., i W. B. Betts. "Uses and Potential of Lignocellulose". W Biodegradation, 201–17. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Little, B. F. P. "Commercial Aspects of Bioconversion Technology". W Biodegradation, 219–34. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Engesser, K. H., i P. Fischer. "Degradation of Haloaromatic Compounds". W Biodegradation, 15–54. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Smith, R. N. "Biodeterioration of Fuels". W Biodegradation, 55–68. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wyatt, J. M., i S. J. Palmer. "Biodegradation of Nitriles and Cyanide". W Biodegradation, 69–88. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mackay, N., i W. B. Betts. "The Fate of Chemicals in Soil". W Biodegradation, 89–117. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sims, G. K., M. Radosevich, X. T. He i S. J. Traina. "The Effects of Sorption on the Bioavailability of Pesticides". W Biodegradation, 119–37. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Betts, W. B., R. K. Dart, A. S. Ball i S. L. Pedlar. "Biosynthesis and Structure of Lignocellulose". W Biodegradation, 139–55. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Biodegradation"

1

Constantin, Mariana, Roxana Rodica Constantinescu, Mihaela Ganciarov, Raluca Suica-Bunghez, Ana-Maria Gurban, Cristina Firinca, Gelu Vasilescu, Luiza Jecu, Iuliana Raut i Madalina Ignat. "Eco-Friendly Biodegradation of Skins and Hides by Keratinolytic Fungus Cladosporium sp." W The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.ii.5.

Pełny tekst źródła
Streszczenie:
As a result of population growth and changes in lifestyles, livestock and meat production is increasing throughout the world. Therefore, a large amount of keratinaceous waste is generated annually from food and leather industry. The conventional method of hair removal in the leather industry through all the chemical processes used creates a great concern for the environment, being a major contributor to the production of waste water. The enzymatic process through microorganism is an eco-friendly option to reduce the oxygen demands in leather processing. In biodegradation and bioremediation processes, waste or polluting products found in different waste substrate can be transformed or converted into unpolluted end products. Our experiments are related to the biodegradative potential of fungi in reducing and reusing waste from the leather industry. The aim of the present study was to evidence the biodegradative ability of the fungal strain Cladosporium sp. on keratin wastes.
Style APA, Harvard, Vancouver, ISO itp.
2

Arora, Neha, Asif Ali, Nandan Kumar Jana i Piyali Basak. "Biodegradation of poly(etherurethanes)". W PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810682.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bland, R. G., D. K. Clapper, N. M. Fleming i C. A. Hood. "Biodegradation and Drilling Fluid Chemicals". W SPE/IADC Drilling Conference. Society of Petroleum Engineers, 1993. http://dx.doi.org/10.2118/25754-ms.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Spanjers i Keesman. "Identification of wastewater biodegradation kinetics". W Proceedings of IEEE International Conference on Control and Applications CCA-94. IEEE, 1994. http://dx.doi.org/10.1109/cca.1994.381375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Rajan, Aiswarya, i S. Vijayalakshmi. "New insights on polyurethane biodegradation". W ISET INTERNATIONAL CONFERENCE ON APPLIED SCIENCE & ENGINEERING (CASE 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0122262.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

HEGDE, SWATI, ELIZABETH DELL, CHRISTOPHER LEWIS, THOMAS A. TRABOLD i CARLOS A. DIAZ. "Anaerobic Biodegradation of Bioplastic Packaging Materials". W The 21st IAPRI World Conference on Packaging. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/iapri2018/24453.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kulikova, Elena. "BIODEGRADATION OF WASTE LOWVISCOSITY EPOXY RESIN". W 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/61/s25.069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rabion, A., F. Perie, A. Basseres, M. Guillerme i C. Zurdo. "Biodegradation of Synthetic Muds: Oxidative Pretreatments". W SPE/UKOOA European Environment Conference. Society of Petroleum Engineers, 1997. http://dx.doi.org/10.2118/37862-ms.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Campbell, B. C., S. Gong, S. C. George, T. J. Vergara, S. H. W. Vick, A. G. McLeish, N. Tran-Dinh i D. J. Midgley. "Geochemical Characteristics of Coal Seam Biodegradation". W 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902877.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

ARVIND, MAHESH, NICHITH K i SNEHA BHATT. "BIODEGRADATION OF POLYPHENOLS BY ARTHOBACTER CITREUS". W Seventh International Conference on Advances in Applied Science and Environmental Technology - ASET 2017. Institute of Research Engineers and Doctors, 2017. http://dx.doi.org/10.15224/978-1-63248-136-8-43.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Biodegradation"

1

Ornston, L. N. Control of Biodegradation in Bacteria. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1991. http://dx.doi.org/10.21236/ada244818.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ornston, L. N. Negative Control of Biodegradation in Pseudomonas. Fort Belvoir, VA: Defense Technical Information Center, marzec 1988. http://dx.doi.org/10.21236/ada193875.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jung, Yoojin, i Alfredo Battistelli. User’s Guide for Biodegradation Reactions in TMVOCBio. Office of Scientific and Technical Information (OSTI), sierpień 2017. http://dx.doi.org/10.2172/1377850.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cameron, J. A., i S. J. Huang. The Mechanisms of Biodegradation of Synthetic Polymers. Fort Belvoir, VA: Defense Technical Information Center, luty 1989. http://dx.doi.org/10.21236/ada205628.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Graves, D., J. Rightmyer i R. Hoye. Biodegradation of Liquid Gun Propellant Formulation 1846. Fort Belvoir, VA: Defense Technical Information Center, luty 1995. http://dx.doi.org/10.21236/ada427078.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Alexander, Martin. Limiting Factors, Enhancement and Kinetics of Biodegradation. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1995. http://dx.doi.org/10.21236/ada293514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bouwer, Edward J., i Gordon D. Cobb. In-Situ Groundwater Treatment Technology Using Biodegradation. Fort Belvoir, VA: Defense Technical Information Center, maj 1987. http://dx.doi.org/10.21236/ada244079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rittman, Bruce. Biotic Transformations of Organic Contaminants. The Groundwater Project, 2023. http://dx.doi.org/10.21083/ousn4116.

Pełny tekst źródła
Streszczenie:
Biodegradation—the breakdown of organic matter by microorganisms—is an important groundwater process that occurs naturally and is especially important for the in situ cleanup of contaminated groundwater. Pollutant biodegradation follows well-established principles that are summarized in this book. The first principle is that the microorganisms must grow and sustain themselves by oxidizing an electron-donor substrate (food) and transferring the electrons to an electron-acceptor substrate (respiration). This electron flow generates energy that the microorganisms use to fuel biomass synthesis. Most pollutants are either an electron acceptor or an electron donor, which means that their biotransformation can grow and sustain the microorganisms. Accordingly, it is critical to understand whether a pollutant is an electron donor or electron acceptor. This book systematically describes the biodegradation mechanisms for common organic pollutants in groundwater: The author identifies if the pollutant behaves as an electron donor or acceptor, and points out when special activation reactions are necessary to initiate biodegradation and put the pollutant into a chemical form that allows it to be an energy-yielding electron donor or acceptor. Special attention is given to organics derived from petroleum and those that have chlorine, fluorine, and nitro substituents.
Style APA, Harvard, Vancouver, ISO itp.
9

Xun, Luying, i Harvey, Jr Bolton. Biodegradation of PuEDTA and Impacts on Pu Mobility. Office of Scientific and Technical Information (OSTI), czerwiec 2003. http://dx.doi.org/10.2172/893775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Xun, Luying, i Jr ,. Harvey Bolton. Biodegradation of PuEDTA and Impacts on Pu Mobility. Office of Scientific and Technical Information (OSTI), czerwiec 2002. http://dx.doi.org/10.2172/893863.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii