Gotowa bibliografia na temat „Biochemical Science”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biochemical Science”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biochemical Science"
Larsson, G., S. B. Jørgensen, M. N. Pons, B. Sonnleitner, A. Tijsterman i N. Titchener-Hooker. "Biochemical engineering science". Journal of Biotechnology 59, nr 1-2 (grudzień 1997): 3–9. http://dx.doi.org/10.1016/s0168-1656(97)00158-2.
Pełny tekst źródłaWeuster-Botz, Dirk. "Biochemical engineering science". Bioprocess and Biosystems Engineering 31, nr 3 (20.03.2008): 153–54. http://dx.doi.org/10.1007/s00449-008-0210-z.
Pełny tekst źródłaBayer, Karl, i Alois Jungbauer. "Advances in biochemical engineering science". Journal of Biotechnology 132, nr 2 (październik 2007): 97–98. http://dx.doi.org/10.1016/j.jbiotec.2007.09.006.
Pełny tekst źródłaWhitehead, P. H. "Biochemical techniques in forensic science". Trends in Biochemical Sciences 10, nr 8 (sierpień 1985): 299–302. http://dx.doi.org/10.1016/0968-0004(85)90167-7.
Pełny tekst źródłaAmato, I. "One-pot biochemical cookery". Science 257, nr 5076 (11.09.1992): 1481. http://dx.doi.org/10.1126/science.1523406.
Pełny tekst źródłaFerreira, Pedro. "Biochemical Society Science Communication Prize 2021". Biochemist 44, nr 1 (18.01.2022): 27. http://dx.doi.org/10.1042/bio_2021_203.
Pełny tekst źródłaHeath, Catherine. "Biochemical Society Science Communication Prize 2022". Biochemist 44, nr 5 (31.10.2022): 19–20. http://dx.doi.org/10.1042/bio_2022_131.
Pełny tekst źródłaAires‐Barros, Raquel, Ana M. Azevedo i Guilherme N. M. Ferreira. "Biochemical Engineering Science—Sustainable Processes and Economies". Biotechnology Journal 14, nr 8 (29.07.2019): 1900276. http://dx.doi.org/10.1002/biot.201900276.
Pełny tekst źródłaUmer, Muhammad, Saba Shabbir, Neelam Chaudhary, Qaiser Hussain, Shabbar Abbas, Muhammad Inam Afzal i Muhammad Sajjad. "Influence of biochemical treatments on consortium of rhizobacteria and soil fertility". Bangladesh Journal of Botany 49, nr 3 (20.09.2020): 437–44. http://dx.doi.org/10.3329/bjb.v49i3.49329.
Pełny tekst źródłaHao, Gefei, i Guangfu Yang. "Pest Control: Risks of Biochemical Pesticides". Science 342, nr 6160 (15.11.2013): 799. http://dx.doi.org/10.1126/science.342.6160.799b.
Pełny tekst źródłaRozprawy doktorskie na temat "Biochemical Science"
Drawert, Brian J. "Spatial Stochastic Simulation of Biochemical Systems". Thesis, University of California, Santa Barbara, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3559784.
Pełny tekst źródłaRecent advances in biology have shown that proteins and genes often interact probabilistically. The resulting effects that arise from these stochastic dynamics differ significantly than traditional deterministic formulations, and have biologically significant ramifications. This has led to the development of computational models of the discrete stochastic biochemical pathways found in living organisms. These include spatial stochastic models, where the physical extent of the domain plays an important role; analogous to traditional partial differential equations.
Simulation of spatial stochastic models is a computationally intensive task. We have developed a new algorithm, the Diffusive Finite State Projection (DFSP) method for the efficient and accurate simulation of stochastic spatially inhomogeneous biochemical systems. DFSP makes use of a novel formulation of Finite State Projection (FSP) to simulate diffusion, while reactions are handled by the Stochastic Simulation Algorithm (SSA). Further, we adapt DFSP to three dimensional, unstructured, tetrahedral meshes in inclusion in the mature and widely usable systems biology modeling software URDME, enabling simulation of the complex geometries found in biological systems. Additionally, we extend DFSP with adaptive error control and a highly efficient parallel implementation for the graphics processing units (GPU).
In an effort to understand biological processes that exhibit stochastic dynamics, we have developed a spatial stochastic model of cellular polarization. Specifically we investigate the ability of yeast cells to sense a spatial gradient of mating pheromone and respond by forming a projection in the direction of the mating partner. Our results demonstrates that higher levels of stochastic noise results in increased robustness, giving support to a cellular model where noise and spatial heterogeneity combine to achieve robust biological function. This also highlights the importance of spatial stochastic modeling to reproduce experimental observations.
Barb, Jessica Gaus. "Biochemical, Genetic, and Cytogenetic Studies of Stokesia laevis (Stokes Aster)". NCSU, 2007. http://www.lib.ncsu.edu/theses/available/etd-11302007-145604/.
Pełny tekst źródłaEdwards, Lorraine Katy. "Biochemical characterization of mammalian high mobility group protein A2". FIU Digital Commons, 2006. http://digitalcommons.fiu.edu/etd/3118.
Pełny tekst źródłaMistry, Dharmit. "Mechanistic studies of some chemical and biochemical reactions". Thesis, University of Huddersfield, 2014. http://eprints.hud.ac.uk/id/eprint/23444/.
Pełny tekst źródłaHart, Jaynee E. "Biochemical and genetic approaches to modulate phototropin photoreceptor sensitivity". Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30991/.
Pełny tekst źródłaThis lays the groundwork for extending the increased sensitivity observed in response to pulses in the photocycle mutants to responses other phot1-mediated responses, and for integrating new models of suppression of phot1 activity into our framework for phot1 activation and signaling.
Khartabil, Rana. "User-centered design and evaluation of a dynamic biochemical pathway visualization tool". Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/26944.
Pełny tekst źródłaWoo, Sung Sik Ph D. Massachusetts Institute of Technology. "Fast simulation of stochastic biochemical reaction networks on cytomorphic chips". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107292.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 169-181).
The large-scale simulation of biochemical reaction networks in cells is important in pathway discovery in medicine, in analyzing complex cell function in systems biology, and in the design of synthetic biological circuits in living cells. However, cells can undergo many trillions of reactions over just an hour with multi-scale interacting feedback loops that manifest complex dynamics; their pathways exhibit non-modular behavior or loading; they exhibit high levels of stochasticity (noise) that require ex- pensive Gillespie algorithms and random-number generation for accurate simulations; and, they routinely operate with nonlinear statics and dynamics. Hence, such simulations are extremely computationally intensive and have remained an important bottleneck in computational biology over decades. By exploiting common mathematical laws between electronics and chemistry, this thesis demonstrates that digitally programmable analog integrated-circuit 'cytomorphic' chips can efficiently run stochastic simulations of complex molecular reaction networks in cells. In a proof-of-concept demonstration, we show that 0.35 [mu]m BiC- MOS cytomorphic gene and protein chips that interact via molecular data packets with FPGAs (Field Programmable Gate Arrays) to simulate networks involving up to 1,400 biochemical reactions can achieve a 700x speedup over COPASI, an efficient bio- chemical network simulator. They can also achieve a 30,000x speedup over MATLAB. The cytomorphic chips operate over five orders of magnitude of input concentration; they enable low-copy-number stochastic simulations by amplifying analog thermal noise that is consistent with Gillespie simulations; they represent non-modular load- ing effects and complex dynamics; and, they simulate zeroth, first, and second-order linear and nonlinear gene-protein networks with arbitrary parameters and network connectivity that can be flexibly digitally programmed. We demonstrate successful stochastic simulation of a p53 cancer pathway and glycolytic oscillations that are consistent with results obtained from conventional digital computer simulations, which are based on experimental data. We show that unlike conventional digital solutions, an increase in network scale or molecular population size does not compromise the simulation speed and accuracy of our completely parallel cytomorphic system. Thus, commonly used circuit improvements to future chips in our digital-to-analog converters, noise generators, and biasing circuits can enable further orders of magnitude of speedup, estimated to be a million fold for large-scale networks.
by Sung Sik Woo.
Ph. D.
Pérez, Verona Isabel Cristina. "Approaches for the exact reduction of large-scale biochemical models". Thesis, IMT Alti Studi Lucca, 2020. http://e-theses.imtlucca.it/303/1/P%C3%A9rezVerona_phdthesis.pdf.
Pełny tekst źródłaSantra, Tapesh. "Evolutionarily stable and fragile modules of yeast biochemical network". Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/2644/.
Pełny tekst źródłaRoyle, Christopher. "Physiological and biochemical responses to frequent milking in dairy cows". Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385209.
Pełny tekst źródłaKsiążki na temat "Biochemical Science"
Alberty, Robert A. Biochemical Thermodynamics. New York: John Wiley & Sons, Ltd., 2006.
Znajdź pełny tekst źródłaTryptophan: Biochemical and health implications. Boca Raton: CRC Press, 2002.
Znajdź pełny tekst źródłaEuropean, Symposium on Biochemical Engineering Science (1st 1996 Dublin City University Ireland). 1st European Symposium on Biochemical Engineering Science: Proceedings of the 1st European Symposium on Biochemical Engineering Science. (Dublin): (ESBES Secretariat, Dublin City University), 1996.
Znajdź pełny tekst źródłaSchügerl, K., A. P. Zeng, J. G. Aunins, A. Bader, W. Bell, H. Biebl, M. Biselli i in., red. Tools and Applications of Biochemical Engineering Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45736-4.
Pełny tekst źródłaAlberty, Robert A. Thermodynamics of Biochemical Reactions. New York: John Wiley & Sons, Ltd., 2005.
Znajdź pełny tekst źródłaThermodynamics of biochemical reactions. Cambridge, MA: Massachusetts Institute of Technology, 2003.
Znajdź pełny tekst źródła1944-, Harrison Roger G., red. Bioseparations science and engineering. New York: Oxford University Press, 2003.
Znajdź pełny tekst źródłaPagliarani, Alessandra. Biochemical and Biological Effects of Organotins. Sharjah: Bentham Science Publishers, 2012.
Znajdź pełny tekst źródłaAvnir, David, i Sergei Braun, red. Biochemical Aspects of Sol-Gel Science and Technology. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1429-5.
Pełny tekst źródłaBrown, S. D. Comprehensive chemometrics: Chemical and biochemical data analysis. Redaktorzy Sarabia L. A, Trygg Johan i ScienceDirect (Online service). Amsterdam: Elsevier, 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "Biochemical Science"
Elkington, Bethany Gwen, Djaja Djendoel Soejarto i Kongmany Sydara. "Biochemical Validation". W SpringerBriefs in Plant Science, 35–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10656-4_3.
Pełny tekst źródłaKelle, Alexander, Kathryn Nixdorff i Malcolm Dando. "Science, Technology and the CW Prohibition Regime". W Controlling Biochemical Weapons, 10–34. London: Palgrave Macmillan UK, 2006. http://dx.doi.org/10.1057/9780230503496_2.
Pełny tekst źródłaKelle, Alexander, Kathryn Nixdorff i Malcolm Dando. "Science, Technology and the BW Prohibition Regime". W Controlling Biochemical Weapons, 35–67. London: Palgrave Macmillan UK, 2006. http://dx.doi.org/10.1057/9780230503496_3.
Pełny tekst źródłaEhrenfeucht, Andrzej, i Grzegorz Rozenberg. "Biochemical Reactions as Computations". W Lecture Notes in Computer Science, 672–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73001-9_70.
Pełny tekst źródłaFormighieri, Cinzia. "Downstream Biochemical Reactions: Carbon Assimilation". W SpringerBriefs in Environmental Science, 59–63. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16730-5_12.
Pełny tekst źródłaKatz, Evgeny, Jan Halámek, Lenka Halámková, Saira Bakshi, Juliana Agudelo i Crystal Huynh. "Biochemical Analysis of Biomarkers for Forensic Applications". W Forensic Science, 151–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527693535.ch8.
Pełny tekst źródłaSunarharum, Wenny Bekti, Tunjung Mahatmanto, Dego Yusa Ali, Yuniar Ponco Prananto i Paulus Immanuel Nugroho. "Coffee polyphenols: Biochemical, processing, and health insights". W Coffee Science, 99–109. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003043133-9.
Pełny tekst źródłaWinfree, Erik. "Fault-Tolerance in Biochemical Systems". W Lecture Notes in Computer Science, 26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11839132_3.
Pełny tekst źródłaPanteris, Eleftherios, Stephen Swift, Annette Payne i Xiaohui Lui. "Biochemical Pathway Analysis via Signature Mining". W Lecture Notes in Computer Science, 12–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11560500_2.
Pełny tekst źródłaSharma, Suresh D., Arpan R. Bhagat i Salvatore Parisi. "Seasonal Variation and Biochemical Composition of Fishmeal". W SpringerBriefs in Molecular Science, 1–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14651-1_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Biochemical Science"
Donnan, Rob, i Rostyslav Dubrovka. "Biochemical observational science at THz energies". W 2011 VIII International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2011. http://dx.doi.org/10.1109/icatt.2011.6170706.
Pełny tekst źródłaFainman, Y., L. Pang, B. Slutsky, J. Ptasinski, L. Feng i M. Chen. "Optofluidic Nano-Plasmonics for Biochemical Sensing". W Laser Science. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ls.2010.ltui1.
Pełny tekst źródłaSaetchnikov, Anton, Vladimir Saetchnikov, Elina Tcherniavskaia i Andreas Ostendorf. "Two-photon polymerization in optical biochemical sensing". W Laser Science and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/lst.2019.ltu2f.3.
Pełny tekst źródłaOnoe, Hiroaki. "Hydrogel microfibers for biochemical applications". W 2017 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2017. http://dx.doi.org/10.1109/mhs.2017.8305193.
Pełny tekst źródłaWangmo, Chimi, i Lena Wiese. "Efficient Subgraph Indexing for Biochemical Graphs". W 11th International Conference on Data Science, Technology and Applications. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011350100003269.
Pełny tekst źródłaLin, Ying, Vladimir Ilchenko, Jay Nadeau i Lute Maleki. "Biochemical detection with optical whispering-gallery resonaters". W Lasers and Applications in Science and Engineering, redaktorzy Alexis V. Kudryashov, Alan H. Paxton i Vladimir S. Ilchenko. SPIE, 2007. http://dx.doi.org/10.1117/12.716591.
Pełny tekst źródłaLiu, Xiao-lu, Ying-ying Wang, Wei Ding, Shou-fei Gao, Ling Cao, Xian Feng i Pu Wang. "Liquid-Core Nodeless Anti-Resonant Fiber for Biochemical Sensing". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_si.2017.stu3k.2.
Pełny tekst źródłaShome, Krishanu, David Z. Fang, Maryna N. Kavalenka i Philippe M. Fauchet. "Metallized Ultrathin Nanocrystalline Si Membranes as Biochemical SPR Sensors". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cmn2.
Pełny tekst źródłaNomura, Shin-ichiro M., i Kazunari Akiyoshi. "Lipid-tubular network formation for biochemical reaction". W 2007 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, 2007. http://dx.doi.org/10.1109/mhs.2007.4420874.
Pełny tekst źródłaGuo, L. Jay, Chung-Yen Chao, Wayne Fung i Jun Yang. "Biochemical sensors based on polymer microring resonators". W Optical Science and Technology, the SPIE 49th Annual Meeting, redaktorzy Robert A. Norwood, Manfred Eich i Mark G. Kuzyk. SPIE, 2004. http://dx.doi.org/10.1117/12.581855.
Pełny tekst źródłaRaporty organizacyjne na temat "Biochemical Science"
Chamovitz, Daniel A., i Xing-Wang Deng. Developmental Regulation and Light Signal Transduction in Plants: The Fus5 Subunit of the Cop9 Signalosome. United States Department of Agriculture, wrzesień 2003. http://dx.doi.org/10.32747/2003.7586531.bard.
Pełny tekst źródła