Artykuły w czasopismach na temat „Bioactive Thin Film”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Bioactive Thin Film”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tong, X., A. Trivedi, H. Jia, M. Zhang i P. Wang. "Enzymic Thin Film Coatings for Bioactive Materials". Biotechnology Progress 24, nr 3 (6.06.2008): 714–19. http://dx.doi.org/10.1021/bp0704135.
Pełny tekst źródłaMa, Q., Y. J. Wang, Cheng Yun Ning, Hai Mei Cheng i Zhao Yi Yin. "Bioactive Porous Film Produced on Titanium Substrate by Micro-Arc Oxidation". Key Engineering Materials 368-372 (luty 2008): 1201–2. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1201.
Pełny tekst źródłaSato, Koji, Daisuke Onodera, Mitsuhiro Hibino i Takeshi Yao. "Development of Bioactive Organic Polymer Coated with Ceramic Thin Films Synthesized from Aqueous Solution". Key Engineering Materials 309-311 (maj 2006): 771–74. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.771.
Pełny tekst źródłaZHAO, YAFAN, CHUANZHONG CHEN i DIANGANG WANG. "THE APPLICATION OF PULSED LASER DEPOSITION IN PRODUCING BIOACTIVE CERAMIC FILMS". Surface Review and Letters 12, nr 03 (czerwiec 2005): 401–8. http://dx.doi.org/10.1142/s0218625x05007177.
Pełny tekst źródłaLyutova, E. S., i L. P. Borilo. "Synthesis of bioactive thin-film SiO2 – P2O5 – СаO – TiO2-base composites". Tsvetnye Metally, nr 2 (28.02.2023): 29–35. http://dx.doi.org/10.17580/tsm.2023.02.04.
Pełny tekst źródłaZhao, Ya Fan, i Ming Da Song. "The Role of the Energy Density in Pulsed Laser Deposition of Bioactive Glass Films". Advanced Materials Research 631-632 (styczeń 2013): 90–94. http://dx.doi.org/10.4028/www.scientific.net/amr.631-632.90.
Pełny tekst źródłaNegut, Irina, Anita Visan, Camelia Popescu, Rodica Cristescu, Anton Ficai, Alexandru Grumezescu, Mariana Chifiriuc i in. "Successful Release of Voriconazole and Flavonoids from MAPLE Deposited Bioactive Surfaces". Applied Sciences 9, nr 4 (22.02.2019): 786. http://dx.doi.org/10.3390/app9040786.
Pełny tekst źródłaJedlicka, Sabrina S., Jenna L. Rickus i Dmitry Zemlyanov. "Controllable Surface Expression of Bioactive Peptides Incorporated into a Silica Thin Film Matrix". Journal of Physical Chemistry C 114, nr 1 (15.12.2009): 342–44. http://dx.doi.org/10.1021/jp907551t.
Pełny tekst źródłaGhosh, Somnath, Tasneem Kausar Ranebennur i H. N. Vasan. "Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification". International Journal of Carbohydrate Chemistry 2011 (11.01.2011): 1–11. http://dx.doi.org/10.1155/2011/693759.
Pełny tekst źródłaSartori, Barbara, Heinz Amenitsch i Benedetta Marmiroli. "Functionalized Mesoporous Thin Films for Biotechnology". Micromachines 12, nr 7 (24.06.2021): 740. http://dx.doi.org/10.3390/mi12070740.
Pełny tekst źródłaRau, Julietta V., Angela De Bonis, Mariangela Curcio, Katharina Schuhladen, Katia Barbaro, Giovanni De Bellis, Roberto Teghil i Aldo R. Boccaccini. "Borate and Silicate Bioactive Glass Coatings Prepared by Nanosecond Pulsed Laser Deposition". Coatings 10, nr 11 (18.11.2020): 1105. http://dx.doi.org/10.3390/coatings10111105.
Pełny tekst źródłaPetrović, Suzana, Nevena Božinović, Vladimir Rajić, Danijela Stanisavljević Ninković, Danilo Kisić, Milena J. Stevanović i Emmanuel Stratakis. "Cell Response on Laser-Patterned Ti/Zr/Ti and Ti/Cu/Ti Multilayer Systems". Coatings 13, nr 6 (16.06.2023): 1107. http://dx.doi.org/10.3390/coatings13061107.
Pełny tekst źródłaTeghil, Roberto, Mariangela Curcio i Angela De Bonis. "Substituted Hydroxyapatite, Glass, and Glass-Ceramic Thin Films Deposited by Nanosecond Pulsed Laser Deposition (PLD) for Biomedical Applications: A Systematic Review". Coatings 11, nr 7 (4.07.2021): 811. http://dx.doi.org/10.3390/coatings11070811.
Pełny tekst źródłaPeptu, Catalina, Marcel Popa i Sophia G. Antimisiaris. "Release of Liposome-Encapsulated Calcein from Liposome Entrapping Gelatin-Carboxymethylcellulose Films: A Presentation of Different Possibilities". Journal of Nanoscience and Nanotechnology 8, nr 5 (1.05.2008): 2249–58. http://dx.doi.org/10.1166/jnn.2008.169.
Pełny tekst źródłaMao, Zhengwei, Lie Ma, Jie Zhou, Changyou Gao i Jiacong Shen. "Bioactive Thin Film of Acidic Fibroblast Growth Factor Fabricated by Layer-by-Layer Assembly". Bioconjugate Chemistry 16, nr 5 (wrzesień 2005): 1316–22. http://dx.doi.org/10.1021/bc049755b.
Pełny tekst źródłaTian, Yi Ping, Shan Shan Wei, Hui Li i Ling Hong Guo. "Fabrication and Characterization of Bioactive Cancellous-Like Surface on Titanium". Key Engineering Materials 368-372 (luty 2008): 1370–73. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1370.
Pełny tekst źródłaMROZEK, PIOTR. "BIOACTIVE GLASS PARTICLES FIELD-ASSISTED SEALING TO TITANIUM IMPLANT GLASS-BASED COATINGS". Surface Review and Letters 16, nr 01 (luty 2009): 1–3. http://dx.doi.org/10.1142/s0218625x09012457.
Pełny tekst źródłaXiao, Fan, Kanji Tsuru, Satoshi Hayakawa i Akiyoshi Osaka. "Low Temperature Synthesis of Bioactive TiO2 Thin Film by Two-Step Treatment". Key Engineering Materials 240-242 (maj 2003): 537–40. http://dx.doi.org/10.4028/www.scientific.net/kem.240-242.537.
Pełny tekst źródłaThampi, Sudhin, A. Maya Nandkumar, Vignesh Muthuvijayan i Ramesh Parameswaran. "Differential Adhesive and Bioactive Properties of the Polymeric Surface Coated with Graphene Oxide Thin Film". ACS Applied Materials & Interfaces 9, nr 5 (30.01.2017): 4498–508. http://dx.doi.org/10.1021/acsami.6b14863.
Pełny tekst źródłaMousa, Hamouda M., Kamal H. Hussein, Ahmed A. Raslan, Joshua Lee, Heung M. Woo, Chan Hee Park i Cheol Sang Kim. "Amorphous apatite thin film formation on a biodegradable Mg alloy for bone regeneration: strategy, characterization, biodegradation, and in vitro cell study". RSC Advances 6, nr 27 (2016): 22563–74. http://dx.doi.org/10.1039/c5ra25306c.
Pełny tekst źródłaCurcio, Mariangela, Brigida Bochicchio, Antonietta Pepe, Antonio Laezza, Adriana De Stefanis, Julietta V. Rau, Roberto Teghil i Angela De Bonis. "Mn-Doped Glass–Ceramic Bioactive (Mn-BG) Thin Film to Selectively Enhance the Bioactivity of Electrospun Fibrous Polymeric Scaffolds". Coatings 12, nr 10 (29.09.2022): 1427. http://dx.doi.org/10.3390/coatings12101427.
Pełny tekst źródłaNegrila, Catalin Constantin, Daniela Predoi, Rodica V. Ghita, Simona Liliana Iconaru, Steluta Carmen Ciobanu, Mirela Manea, Monica Luminita Badea i in. "Multi-Level Evaluation of UV Action upon Vitamin D Enhanced, Silver Doped Hydroxyapatite Thin Films Deposited on Titanium Substrate". Coatings 11, nr 2 (21.01.2021): 120. http://dx.doi.org/10.3390/coatings11020120.
Pełny tekst źródłaPetkova, Hristina, Ewelina Jarek, Mitko Doychinov, Marcel Krzan i Elena Mileva. "Synergy in Aqueous Systems Containing Bioactive Ingredients of Natural Origin: Saponin/Pectin Mixtures". Polymers 14, nr 20 (16.10.2022): 4362. http://dx.doi.org/10.3390/polym14204362.
Pełny tekst źródłaUeda, Masato, Hiroki Sai, Masahiko Ikeda i Michiharu Ogawa. "Formation of Hydroxyapatite on Titanium Oxides in Simulated Body Fluid under UV Irradiation". Materials Science Forum 654-656 (czerwiec 2010): 2257–60. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2257.
Pełny tekst źródłaMorita, Yasuyuki, Toshiki Miyazaki, Eiichi Ishida i Chikara Ohtsuki. "Apatite-Forming Ability of Organic-Inorganic Hybrids Prepared from Calcium Silicate and Glucomannan". Key Engineering Materials 361-363 (listopad 2007): 567–70. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.567.
Pełny tekst źródłaYu, Qi Feng, Bang Cheng Yang, Yao Wu i Xing Dong Zhang. "Preparation of Bioactive Nanophase Titania Ceramics by Alkali-Heat Treatment". Key Engineering Materials 288-289 (czerwiec 2005): 215–18. http://dx.doi.org/10.4028/www.scientific.net/kem.288-289.215.
Pełny tekst źródłaБорило, Л. П., i Е. С. Лютова. "Influence of Na2O and TiO2 Additives on Properties of Bioactive Thin Film Materials Based SiO2–P2O5–СаO System". Herald of the Bauman Moscow State Technical University. Series Natural Sciences, nr 76 (26.01.2018): 104–14. http://dx.doi.org/10.18698/1812-3368-2018-1-104-114.
Pełny tekst źródłaWang, Mingyuan, i Jiuyu Gao. "Atomic layer deposition of ZnO thin film on ZrO2 dental implant surface for enhanced antibacterial and bioactive performance". Materials Letters 285 (luty 2021): 128854. http://dx.doi.org/10.1016/j.matlet.2020.128854.
Pełny tekst źródłaHwang, Sehoon, Sang Ho Lim i Seunghee Han. "Highly adhesive and bioactive Ti–Mg alloy thin film on polyether ether ketone formed by PIII&D technique". Applied Surface Science 471 (marzec 2019): 878–86. http://dx.doi.org/10.1016/j.apsusc.2018.12.080.
Pełny tekst źródłaLeonor, Isabel B., Francisco Balas, Kawashita Masakazu, Rui L. Reis, Tadashi Kokubo i Takashi Nakamura. "Biomimetic Apatite Formation on Different Polymeric Microspheres Modified with Calcium Silicate Solutions". Key Engineering Materials 309-311 (maj 2006): 279–82. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.279.
Pełny tekst źródłaLopes, Ana I. F., David M. Pereira, M. Sameiro T. Gonçalves, A. Gil Fortes i Elisabete M. S. Castanheira. "Nanosystems for the Encapsulation and Release of Plant Extracts with Insecticidal Activity". Chemistry Proceedings 3, nr 1 (14.11.2020): 39. http://dx.doi.org/10.3390/ecsoc-24-08332.
Pełny tekst źródłaBorilo, Lyudmila P., Ekaterina S. Lyutova i Larisa N. Spivakova. "Рroperties of Bioactive Thin-Films Based on System SiO2-P2O5-CаO and SiO2-P2O5-СаO-Na2O Obtained by Sol-Gel Method". Key Engineering Materials 683 (luty 2016): 306–11. http://dx.doi.org/10.4028/www.scientific.net/kem.683.306.
Pełny tekst źródłaSafaie, Naghmeh, Holly Jones-Taggart i Amirkianoosh Kiani. "High Intensity Laser Induced Reverse Transfer: Solution for Enhancement of Biocompatibility of Transparent Biomaterials". Coatings 9, nr 9 (17.09.2019): 586. http://dx.doi.org/10.3390/coatings9090586.
Pełny tekst źródłaBorilo, L. P., i E. S. Lyutova. "Synthesis and properties of bioactive thin-film materials based on the SiO2–P2O5–СаO and SiO2–P2O5–CaO–TiO2 systems". Inorganic Materials 53, nr 4 (kwiecień 2017): 400–405. http://dx.doi.org/10.1134/s0020168517040033.
Pełny tekst źródłaParashar, Pratima. "Synthesis of Silver Nanocomposite with Poly(vinylpyrollidone) and Poly(4-vinylpyridine) for Antimicrobial Activity". Advanced Materials Research 772 (wrzesień 2013): 9–14. http://dx.doi.org/10.4028/www.scientific.net/amr.772.9.
Pełny tekst źródłaJinga, Sorin-Ion, Michael Skokin, Bogdan-Stefan Vasile, Izabela Constantinoiu, Dana Miu, Mihaela Bacalum i Cristina Busuioc. "Development of Vitroceramic Coatings and Analysis of Their Suitability for Biomedical Applications". Coatings 9, nr 10 (16.10.2019): 671. http://dx.doi.org/10.3390/coatings9100671.
Pełny tekst źródłaLuo, Sheng Lei, Zhan Hua Yang, Ming Lin, Xin Xu, Yan Hui Zhang, Bin Guo i Li Li Dong. "Characterization and Bioactivity of Ti-6Al-4V Alloy Dental Implant Surface Treated by SLA Technique". Advanced Materials Research 926-930 (maj 2014): 965–68. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.965.
Pełny tekst źródłaColovic, Bozana, Dejan Markovic i Vukoman Jokanovic. "Nucleation of biomimetic hydroxyapatite". Serbian Dental Journal 58, nr 1 (2011): 7–15. http://dx.doi.org/10.2298/sgs1101007c.
Pełny tekst źródłaWang, Hui, Bang Cheng Yang, Qi Feng Yu, Dayi Wu i Xing Dong Zhang. "In Vitro Bioactivity of Composite of Nanophase Titania/Bioactive Glass-Ceramic in Simulated Body Fluid". Key Engineering Materials 288-289 (czerwiec 2005): 171–74. http://dx.doi.org/10.4028/www.scientific.net/kem.288-289.171.
Pełny tekst źródłaChen, Lijuan, Bowen Yue, Zhiming Liu, Yali Luo, Lu Ni, Zhiyong Zhou i Xuemei Ge. "Study on the Preparation, Characterization, and Stability of Freeze-Dried Curcumin-Loaded Cochleates". Foods 11, nr 5 (28.02.2022): 710. http://dx.doi.org/10.3390/foods11050710.
Pełny tekst źródłaMonteiro, Luís P. G., João Borges, João M. M. Rodrigues i João F. Mano. "Unveiling the Assembly of Neutral Marine Polysaccharides into Electrostatic-Driven Layer-by-Layer Bioassemblies by Chemical Functionalization". Marine Drugs 21, nr 2 (27.01.2023): 92. http://dx.doi.org/10.3390/md21020092.
Pełny tekst źródłaGonzález-Henríquez, Carmen M., Fernando E. Rodríguez-Umanzor, Nicolas F. Acuña-Ruiz, Gloria E. Vera-Rojas, Claudio Terraza-Inostroza, Nicolas A. Cohn-Inostroza, Andrés Utrera, Mauricio A. Sarabia-Vallejos i Juan Rodríguez-Hernández. "Fabrication and Testing of Multi-Hierarchical Porous Scaffolds Designed for Bone Regeneration via Additive Manufacturing Processes". Polymers 14, nr 19 (27.09.2022): 4041. http://dx.doi.org/10.3390/polym14194041.
Pełny tekst źródłaDuta, Liviu, i Andrei Popescu. "Current Status on Pulsed Laser Deposition of Coatings from Animal-Origin Calcium Phosphate Sources". Coatings 9, nr 5 (24.05.2019): 335. http://dx.doi.org/10.3390/coatings9050335.
Pełny tekst źródłaDulski, Mateusz, Jacek Balcerzak, Wojciech Simka i Karolina Dudek. "Innovative Bioactive Ag-SiO2/TiO2 Coating on a NiTi Shape Memory Alloy: Structure and Mechanism of Its Formation". Materials 14, nr 1 (29.12.2020): 99. http://dx.doi.org/10.3390/ma14010099.
Pełny tekst źródłaMubeen, Hajera, i Abdul Mannan. "Formulation and Optimization of Guggul Lipid Phytosomal Gel of Thymoquinone Using 22 Factorial Design". International Journal of Pharmaceutical Sciences and Drug Research 13, nr 04 (3.03.2020): 371–78. http://dx.doi.org/10.25004/ijpsdr.2021.130402.
Pełny tekst źródłaRhee, Sang Hoon, Yong Keun Lee i Bum Soon Lim. "Evaluation of a Chitosan Nano-Hybrid Material Containing Silanol Group and Calcium Salt as a Bioactive Bone Graft". Key Engineering Materials 284-286 (kwiecień 2005): 765–68. http://dx.doi.org/10.4028/www.scientific.net/kem.284-286.765.
Pełny tekst źródłaKaracan, Ipek, Joshua Chou, Besim Ben-Nissan, Innocent J. Macha, Sophie Cazalbou i Bruce Milthorpe. "Multifunctional-Dual Drug Delivery Poly-Lactic Acid Biocomposite Coating with Hydroxyapatite for Bone Implants". Key Engineering Materials 782 (październik 2018): 212–17. http://dx.doi.org/10.4028/www.scientific.net/kem.782.212.
Pełny tekst źródłaSzesz, Eduardo Mioduski, G. B. de Souza, Emanuel Santos i Neide K. Kuromoto. "Nanomechanical Properties of Bioactive Ti Surfaces Obtained by NaOH-Based Anodic Oxidation and Alkali Treatment". Key Engineering Materials 493-494 (październik 2011): 524–29. http://dx.doi.org/10.4028/www.scientific.net/kem.493-494.524.
Pełny tekst źródłaNeacsu, Ionela Andreea, Laura Vasilica Arsenie, Roxana Trusca, Ioana Lavinia Ardelean, Natalia Mihailescu, Ion Nicolae Mihailescu, Carmen Ristoscu, Coralia Bleotu, Anton Ficai i Ecaterina Andronescu. "Biomimetic Collagen/Zn2+-Substituted Calcium Phosphate Composite Coatings on Titanium Substrates as Prospective Bioactive Layer for Implants: A Comparative Study Spin Coating vs. MAPLE". Nanomaterials 9, nr 5 (3.05.2019): 692. http://dx.doi.org/10.3390/nano9050692.
Pełny tekst źródłaSeo, Do Won, J. G. Kim, Yun Hae Kim i Chin Myung Whang. "Apatite Formation on PDMS-Modified SiO2-CaO-P2O5 Hybrids Prepared with Different P2O5 Content by Sol-Gel Method". Materials Science Forum 449-452 (marzec 2004): 1121–24. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.1121.
Pełny tekst źródła