Gotowa bibliografia na temat „Bioaccumulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Bioaccumulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Bioaccumulation"
Akhter, Kulsoom, Tahseen Ghous, Zain Ul-Abdin, Saiqa Andleeb, Muhammad Naeem Ahmed i Basharat Hussain. "Chromium bioaccumulation potential of Bacillus cereus isolated from rhizospheres of Tagetes minuta L." Bangladesh Journal of Botany 49, nr 1 (31.03.2020): 47–54. http://dx.doi.org/10.3329/bjb.v49i1.49091.
Pełny tekst źródłaReemtsma, T., i N. Klinkow. "A strategy for the assessment of hazardous substances in industrial effluents (IDA)". Water Science and Technology 50, nr 5 (1.09.2004): 59–66. http://dx.doi.org/10.2166/wst.2004.0309.
Pełny tekst źródłaAhmed, Abu Tweb Abu, Suman Mandal, Didarul Alam Chowdhury, Abu Rayhan M. Tareq i M. Mizanur Rahman. "Bioaccumulation of Some Heavy Metals in Ayre Fish (Sperata Aor Hamilton, 1822), Sediment and Water of Dhaleshwari River in Dry Season". Bangladesh Journal of Zoology 40, nr 1 (10.12.2012): 147–53. http://dx.doi.org/10.3329/bjz.v40i1.12904.
Pełny tekst źródłaWnorowski, Aleksandra U. "Selection of Bacterial and Fungal Strains for Bioaccumulation of Heavy Metals from Aqueous Solutions". Water Science and Technology 23, nr 1-3 (1.01.1991): 309–18. http://dx.doi.org/10.2166/wst.1991.0429.
Pełny tekst źródłaCanonica, Laura, Grazia Cecchi, Vittorio Capra, Simone Di Piazza, Alessandro Girelli, Sandro Zappatore i Mirca Zotti. "Fungal Arsenic Tolerance and Bioaccumulation: Local Strains from Polluted Water vs. Allochthonous Strains". Environments 11, nr 1 (22.01.2024): 23. http://dx.doi.org/10.3390/environments11010023.
Pełny tekst źródłaCampos, Bruno Galvão de, Denis Moledo de Souza Abessa i Roberto Martins. "Preliminary Findings on the Bioaccumulation and Marine Trophic Transfer of the Antifouling Biocide DCOIT in Soluble and Nanostructured Forms". Sustainability 16, nr 18 (13.09.2024): 7996. http://dx.doi.org/10.3390/su16187996.
Pełny tekst źródłaEl Boudammoussi, Mustapha, Yahya El Hammoudani, Khadija Haboubi, Lahcen Benaabidate, Iliass Achoukhi, Abdelaziz Touzani, Mohamed Moudou, Hatim Faiz i Fouad Dimane. "Assessment of Trace Metal Contamination in Bivalve, Mytilus galloprovincialis, By Bioconcentration Factor (BCF) in the Moroccan Mediterranean Coast Environment". BIO Web of Conferences 109 (2024): 01003. http://dx.doi.org/10.1051/bioconf/202410901003.
Pełny tekst źródłaGuha Roy, Aimee. "Metal bioaccumulation". Nature Sustainability 2, nr 10 (październik 2019): 902. http://dx.doi.org/10.1038/s41893-019-0408-x.
Pełny tekst źródłaGewurtz, Sarah B., i Miriam L. Diamond. "Distribution and burdens of bioaccumulative contaminants in the Lake Erie food web: A review". Environmental Reviews 11, nr 3 (1.09.2003): 141–60. http://dx.doi.org/10.1139/a03-014.
Pełny tekst źródłaZalewska, Tamara, i Michał Saniewski. "Bioaccumulation of 137Cs by benthic plants and macroinvertebrates". Oceanological and Hydrobiological Studies 40, nr 3 (1.01.2011): 1–8. http://dx.doi.org/10.2478/s13545-011-0023-6.
Pełny tekst źródłaRozprawy doktorskie na temat "Bioaccumulation"
Yu, Shuo. "Bioaccumulation of Metals in Earthworms". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259697144.
Pełny tekst źródłaAl-Ansari, Ahmed. "Bioaccumulation of 17α-Ethinylestradiol in Fish". Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22684.
Pełny tekst źródłaStrady, Emilie. "Mécanismes biogéochimiques de la contamination des huîtres Crassostrea gigas en Cadmium en baie de Marennes Oléron". Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14060/document.
Pełny tekst źródłaThe Marennes-Oléron Bay, hosting the largest oyster production in France, is influenced by thehistoric polymetallic pollution of the Gironde Estuary, with cadmium levels in oysters close tothe consumption limit level (5 μg.g-1 dw, EC No.466/2001). The aim of this pluridisciplinarywork was to characterize the behaviour of trace metals in the coastal zone and the mechanisms ofCd contamination in oysters in the Marennes Oléron Bay. Seven oceanographic cruises wereconducted during contrasting season to characterize trace metals behaviour and speciation in theGironde and Charente estuaries and the coastal zone. Then, a spatial and temporal study of tracemetals in the surface sediments of the Marennes-Oléron Bay showed punctual Cd-enrichedsediments in the southern part, reflecting the connexion with the Gironde waters and theparticulate Cd inputs via the Maumusson inlet. Thus, this area was chosen to study Cdbioaccumulation in oysters over a three months transplantation. The regional hydrodynamic,observed by satellite images, played an important role on Cd speciation and the temporalvariability of dissolved and particulate Cd concentrations. Cadmium bioaccumulation in organsof oysters reared on tables at 60 cm height was more important than in oysters reared near thesediment, suggesting the absence of Cd released during tidal suspension from sediment andmicrophytobenthos. Furthermore, as the immersion time was closed between the two rearingconditions, we suggested Cd bioaccumulation via the direct pathway and also via trophicpathway of contamination by pelagic plankton ingestion. This trophic pathway of Cdcontamination was validated during laboratory experiments using a simultaneous tracing of Cddirect and trophic pathways in oysters by stable isotope spikes at concencentrations 10-foldhigher than the Gironde Estuary and at realistic concentrations observed in the Marennes-OléronBay
Kuhn, Sabine Plocher. "Bioaccumulation of metals using immobilized Zoogloea ramigera /". The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu148759497065045.
Pełny tekst źródłaHEGE, SYLVIA. "Bioaccumulation de metaux chez des champignons macromycetes". Strasbourg 1, 1989. http://www.theses.fr/1989STR15019.
Pełny tekst źródłaRodrigues, Sandra. "Mercury bioaccumulation in the Egyptian mongoose (Herpestes ichneumon)". Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/10685.
Pełny tekst źródłaO sacarrabos (Herpestes ichneumon) é um predador que desempenha um papel essencial na cadeia alimentar terrestre. A sua introdução e rápida proliferação pelo território português levaram à necessidade da sua caça como controlo de predadores. Estudos em espécies predadoras terrestres ainda são escassos, pelo que o presente trabalho representa uma mais-valia para um melhor entendimento da acumulação de contaminantes em níveis tróficos superiores. Existem vários contaminantes que representam uma constante preocupação para o ambiente; entre eles, o mercúrio tem tido uma atenção acrescida devido à sua persistência e toxicidade. Estudos no meio terrestre são importantes para um melhor entendimento da forma como se acumula neste meio, para a preservação da vida selvagem mas também para prevenir a exposição humana ao mercúrio. Este estudo teve como principal objectivo avaliar os padrões de acumulação de mercúrio nos tecidos do H. ichneumon, tendo em atenção factores como o género e a idade. H. ichneumon de localizações diferentes foram analisados de forma a avaliar a variação geográfica dos níveis de mercúrio em território Português. Músculo, fígado, pulmão, coração, baço, rins, sangue, cérebro, gordura e pêlo de 29 indivíduos provenientes de 14 localizações foram analisados (Évora, Soure, Ferreira do Zêzere, Castelo Branco, Mértola, Torres Novas, Tondela, Lousã, Coimbra, Montemor-o-Novo, Castro Daire, Olhão, Moura e Coruche). Além disso, de forma a estudar diferenças entre machos e fêmeas ao longo do ciclo de vida da espécie, 25 indivíduos provenientes de Serpa foram analisados. Os níveis de mercúrio nos diferentes órgãos variaram entre 0.01 e 12.7 μg g-1 peso seco, e seguiram geralmente a seguinte ordem, do menos para o mais contaminado: Gordura
The Egyptian mongoose (Herpestes ichneumon), a terrestrial predatory species, has an essential role in the terrestrial food chain. Their introduction in Portugal and rapid proliferation throughout Portuguese territory led to the necessity of their hunt as predator control measure. Studies in terrestrial predatory species are sparse; thereby, the present study is an asset for a better understanding of contaminants accumulation in higher trophic levels. Many contaminants are of environmental concern; mercury has had increased attention due to its persistence and toxicity. Studies have been mostly directed to aquatic wildlife due to the fact that fish consumption is considered to be the principal route of human exposure to mercury. However, terrestrial wildlife studies are also important for a better understanding of mercury accumulation, wildlife preservation and also for preventing human exposure to mercury. The main purpose of this study was to evaluate the different tissue accumulation in H. ichneumon, as well as differences between males and females, throughout the lifespan of the species. H. ichneumons from different locations were also analyzed in order to compare levels throughout Portuguese territory. Muscle, liver, lungs, heart, spleen, kidneys, blood, brain, fat and pelage were analyzed for 29 H. ichneumon from 14 locations (Évora, Soure, Ferreira do Zêzere, Castelo Branco, Mértola, Torres Novas, Tondela, Lousã, Coimbra, Montemor-o-Novo, Castro Daire, Olhão, Moura and Coruche). In order to study differences between ages, males and females, 25 individuals from Serpa were analyzed. Total mercury concentrations in H. ichneumon tissue samples ranged between 0.01 to 12.7 μg g-1 dw, and followed the order, from least to most contaminated: Fat
Rodrigues, Andreia do Carmo Martins. "Mercury toxicity and bioaccumulation: lab & field studies". Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7457.
Pełny tekst źródłaThis work aims to evaluate the toxicity, bioaccumulation and biomagnification of mercury and it is divided into a laboratory and a field component. The laboratory component was divided into two parts and the field component was conducted into an estuarine environment in Ria de Aveiro, Portugal. In the laboratory we started by evaluating the toxicity of mercury for different aquatic organisms, using mercury concentrations that ranged between 0.5 μg/L to 2.4 mg/L. The chosen species used in this assay to evaluate mercury toxicity were the models: Pseudokirchneriella subcapitata, Daphnia magna and Chironomus riparius and the autochthonous species: Chlorella vulgaris, Lemna minor and Daphnia longispina. Mercury showed to be toxic to all testes species, with EC50 values ranging from 7.3 μg Hg/L (immobilization test of D. longispina) to 1.58 mg Hg/L (immobilization test of the larvae of C. riparius). The assay showed that even low doses of mercury can cause significant effects at the levels of primary producers, the base of the trophic chain. In the secondary laboratorial assay, an aquatic trophic chain was simulated using the primary producer P. subcapitata, the primary consumer D. magna and the secondary consumer Danio rerio. The trophic chain mercury contamination process was initiated exposing an algae culture to inorganic mercury (10 μg Hg/L), resulting in the accumulation of 70% of the available mercury in the primary producer. The contaminated algae were then used as food supply to the specie D. magna and subsequently D. magna specimens were used as food to the secondary consumer. After 14 days of exposure D. magna accumulates 0.14 μg Hg/g, whereas the final average concentration obtained in the muscle of the fish D. rerio after 21 days was 0.27 μg Hg/g (wet weight). All test species accumulate mercury along the time of exposure; the higher biomagnification occurred from the microalgae P. subcapitata to the mircrocrustacean D. magna, enhancing the crucial role of primary producers in the bioconcentration of mercury from the water column along the trophic chain. Fieldwork was conducted in the Ria de Aveiro, in two specific sites (Cais do Bico and Barra) that were already characterized regarding dissimilar environmental mercury contamination levels. Mercury levels were evaluated in the water column (total mercury), sediments (total and organic mercury) and in juvenile fish Liza aurata inhabiting the area (total and organic mercury). Cais do Bico site, located near the source of contamination showed the highest values of total mercury: 68 ng/L in the water column, 0.19 μg/g in the sediments and 0.07 μg/g in fish. The site distant from the source of mercury (Barra) presented a great amount of organic mercury in the sediments (0.02 μg/g) and a higher percentage of organic mercury in fish muscle (96%). The study indicates that, although mercury discharges have already stopped in the end of the last century, mercury stored in sediments continues to be ressuspended to the water column, becoming bioavailable to biota. The adoption of juvenile specimens provides information on short-term variations of mercury concentrations in the environment.
O objectivo deste trabalho é avaliar a toxicidade, a bioacumulação e a bioamplificação de mercúrio. O trabalho apresenta uma componente laboratorial e uma componente de campo. A componente laboratorial foi dividida em duas partes e a componente de campo foi realizada num ambiente estuarino, Ria de Aveiro, Portugal. Na componente laboratorial, começou por se avaliar a toxicidade do mercúrio para diferentes organismos aquáticos, testando-se concentrações de mercúrio entre 0,5 μg/L e 2,4 mg/L. As espécies teste escolhidas para avaliar a toxicidade do mercúrio incluíram espécies modelo: Pseudokirchneriella subcapitata, Daphnia magna e Chironomus riparius, e espécies autóctones: Chlorella vulgaris, Lemna minor e Daphnia longispina. O mercúrio revelou ser tóxico para todas as espécies, obtendo-se valores de EC50 que variaram de 7.3 μg Hg/L (teste de imobilização de D. longispina) a 1,58 mg Hg/L (teste de imobilização das larvas de C. riparius). Este ensaio demonstrou que pequenas doses de mercúrio provocam efeitos consideráveis ao nível dos produtores primários, base das cadeias tróficas. Num segundo procedimento experimental construiu-se uma cadeia trófica aquática, constituída pelo produtor primário P. subcapitata, pelo consumidor primário D. magna e o consumidor secundário Danio rerio. A contaminação iniciou-se pelo meio de cultura das algas com 10 μg Hg/L, do qual estas acumularam 70% do mercúrio disponível. Esta espécie foi usada como alimento para D. magna, que por sua vez, foi usada como alimento para o consumidor secundário Danio rerio. Após um período de 14 dias de teste D. magna acumulou 0,14 μg Hg/g. A concentração média obtida no músculo de D. rerio, após 21 dias de teste, foi de 0,27 μg Hg/g, peso fresco. Todos os organismos acumularam mercúrio ao longo do tempo de exposição, sendo que a maior bioamplificação de mercúrio ocorreu da microalga P. subcapitata para o microcrustáceo D. magna, reforçando assim o papel crucial dos produtores primários na bioconcentração de mercúrio da coluna de água para as cadeias tróficas. O trabalho de campo foi realizado na Ria de Aveiro, em dois sítios específicos, cuja caracterização em termos de contaminação por mercúrio já estava descrita. Estudou-se a carga de mercúrio total na coluna de água, bem como o mercúrio total e orgânico nos sedimentos e a sua transferência e acumulação para peixes juvenis residentes na área, Liza aurata. O Cais do Bico, local mais próximo da fonte de contaminação apresentou os maiores valores de mercúrio total: 68 ng/L na coluna de água, 0,19 μg/g nos sedimentos e 0,07 μg/g nos peixes. O local mais distante da fonte de mercúrio, Barra, apresentou uma maior quantidade de mercúrio orgânico nos sedimentos (0,02 μg/g) e uma percentagem de mercúrio orgânico no músculo dos peixes igualmente superior, de 96%. Esta monitorização comprovou que, embora as descargas industriais de mercúrio já tenham sido interrompidas no final do século passado, o mercúrio armazenado nos sedimentos continua a ser ressuspendido para a coluna de água, ficando biodisponível para a biota. A utilização de organismos juvenis fornece informações sobre as variações a curto prazo das concentrações de mercúrio no ambiente.
Naigaga, Irene. "Bioaccumulation and histopathology of copper in Oreochromis mossambicus". Thesis, Rhodes University, 2003. http://hdl.handle.net/10962/d1005077.
Pełny tekst źródłaFarmer, Troy Mason DeVries Dennis R. Wright Russell A. "Mercury bioaccumulation patterns in two estuarine sportfish populations". Auburn, Ala, 2008. http://hdl.handle.net/10415/1459.
Pełny tekst źródłaGiansiracusa, Sara. "Bioaccumulation of legacy and emerging contaminants in tuna species". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18305/.
Pełny tekst źródłaKsiążki na temat "Bioaccumulation"
Connell, D. W. Bioaccumulation of xenobiotic compounds. Boca Raton, Fla: CRC Press, 1990.
Znajdź pełny tekst źródłaBeek, B., red. Bioaccumulation – New Aspects and Developments. Berlin/Heidelberg: Springer-Verlag, 2000. http://dx.doi.org/10.1007/10503050.
Pełny tekst źródłainc, Tetra Tech. Bioaccumulation monitoring guidance: Final report. Bellevue, Wash: Tetra Tech, Inc., 1985.
Znajdź pełny tekst źródłaChojnacka, Katarzyna. Biosorption and bioaccumulation in practice. New York: Nova Science Publishers, 2009.
Znajdź pełny tekst źródłaGuthrie, Donald R. Bioaccumulation from Amax/Kitsault of tailings. Ottawa, Ont: Environment Canada, Environmental Protection Service, 1985.
Znajdź pełny tekst źródłaAxel, Wilkening, Köpp Herbert i Biologische Bundesanstalt für Land- und Forstwirtschaft., red. Prüfung und Bewertung der Bioakkumulationsneigung von Pflanzenschutzmittelwirkstoffen: Fachgepräch am 16. Juni 1992 in Braunschweig = Evaluation and assessment of bioaccumulation of active ingredients of plant protection products. Berlin: Kommissionsverlag P. Parey, 1993.
Znajdź pełny tekst źródłaHung, Hayley Hing Ning. The bioaccumulation of organic chemicals in vegetation. Ottawa: National Library of Canada, 1996.
Znajdź pełny tekst źródłaMaryland. Monitoring and Non-Tidal Assessment Division. An examination of the factors that control methylmercury production and bioaccumulation in Maryland reservoirs: Final report. Annapolis, Md: Maryland Dept. of Natural Resources, Monitoring and Non-Tidal Assessment Division, 2008.
Znajdź pełny tekst źródłaF, Landrum Peter, i Great Lakes Environmental Research Laboratory, red. Toxicokinetics of polychlorinated biphenyl congeners by Diporeia spp.: Effects of temperature and organism size / P.F. Landrum ... [et al.]. Ann Arbor, Mich: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Great Lakes Environmental Research Laboratory, 1998.
Znajdź pełny tekst źródłaA, Brightbill Robin, i Geological Survey (U.S.), red. Total mercury and methylmercury in fish fillets, water, and bed sediments from selected streams in the Delaware River basin, New Jersey, New York, and Pennsylvania, 1998-2001. New Cumberland, Pa: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Bioaccumulation"
Mance, Geoffrey. "Bioaccumulation". W Pollution Threat of Heavy Metals in Aquatic Environments, 287–98. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3421-4_9.
Pełny tekst źródłada Costa, Monica Ferreira, Helena do Amaral Kehrig i Isabel Maria Neto da Silva Moreira. "Bioaccumulation". W Encyclopedia of Estuaries, 74–75. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-8801-4_132.
Pełny tekst źródłaWeis, Judith S. "Bioaccumulation/Storage/Detoxification". W Physiological, Developmental and Behavioral Effects of Marine Pollution, 355–92. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6949-6_10.
Pełny tekst źródłaNewman, Michael C. "Factors Influencing Bioaccumulation". W Fundamentals of Ecotoxicology, 127–55. Fifth edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351133999-4.
Pełny tekst źródłaSteffi, P. F., i P. F. Mishel. "Bioaccumulation and Biosorption". W Bioremediation for Sustainable Environmental Cleanup, 56–66. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003277941-4.
Pełny tekst źródłaRodriguez, Pilar, i Trefor B. Reynoldson. "Bioaccumulation and Trophic Transfer". W The Pollution Biology of Aquatic Oligochaetes, 159–99. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1718-3_5.
Pełny tekst źródłaPatil, Ganapati P., Sharad D. Gore i Charles Taillie*. "Composite Sampling and Bioaccumulation". W Composite Sampling, 239–42. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7628-4_14.
Pełny tekst źródłaBarron, Mace G., i Kent B. Woodburn. "Pesticide Bioaccumulation and Metabolism". W Xenobiotics in Fish, 39–54. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4703-7_4.
Pełny tekst źródłaBienfang, Paul K., Henry Trapido-Rosenthal i Edward A. Laws. "Bioaccumulation bioaccumulation /Biomagnifications marine ecosystem biomagnification in Food Chains food chain". W Encyclopedia of Sustainability Science and Technology, 822–45. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_50.
Pełny tekst źródłaStreit, Bruno. "Bioaccumulation of contaminants in fish". W Fish Ecotoxicology, 353–87. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8853-0_12.
Pełny tekst źródłaStreszczenia konferencji na temat "Bioaccumulation"
Castillo, Julio, Sokratis Papaspyrou, Maria Carmen Duran, Alfonso Corzo, Jose Miguel Nieto, Manuel Caraballo, Mercedes Becerra-Herrera, Alba Gomez-Arias i Angel Valverde Portal. "Extracellular elemental copper bioaccumulation". W Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.20705.
Pełny tekst źródłaOancea, Florin. "Bioaccumulation Potential of Selenium Nanoparticles". W Priochem 2021. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/chemproc2022007029.
Pełny tekst źródłaMoigradean, Diana. "HEAVY METALS BIOACCUMULATION RATE IN TOMATO FRUIT". W 14th SGEM GeoConference on ECOLOGY, ECONOMICS, EDUCATION AND LEGISLATION. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b52/s20.045.
Pełny tekst źródłaZhang, Yanxu. "Bioaccumulation of Methylmercury in a Marine Plankton Ecosystem". W Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.3140.
Pełny tekst źródłaJOHNS, N., J. KURTZMAN, Z. SHTASEL-GOTTLIEB, S. RAUCH i D. I. WALLACE. "THE BIOACCUMULATION OF METHYLMERCURY IN AN AQUATIC ECOSYSTEM". W BIOMAT 2010 - International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343435_0017.
Pełny tekst źródłaWalker, Rachel A., i Chad R. Hammerschmidt. "MERCURY BIOACCUMULATION IN SPOTTED SALAMANDERS IN SOUTHWEST OHIO". W Joint 52nd Northeastern Annual Section and 51st North-Central Annual GSA Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017ne-291035.
Pełny tekst źródłaAbdou, Melina, Alexandra Coynel, Jörg Schäfer, Miguel Santos i Miguel Caetano. "Platinum distribution and bioaccumulation in estuarine/coastal systems". W Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11240.
Pełny tekst źródłaDilek, Sophie, Siphokazi Kargbo, Jessica Morgan, Marc Anderson, Robert M. Newton i Robert B. Merritt. "BIOACCUMULATION OF MERCURY IN LARGEMOUTH BASS FROM NORTHWESTERN MISSOURI". W 51st Annual Northeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016ne-272327.
Pełny tekst źródłaLaughlin, R. "Bioaccumulation of Tributyltin: The Link Between Environment and Organism". W OCEANS '86. IEEE, 1986. http://dx.doi.org/10.1109/oceans.1986.1160346.
Pełny tekst źródłaBrankovic, Snezana, Radmila Glisic, Duško Brkovic, Gorica Đelic, Zoran Simic, Vera Rajicic, Ranko Saric i Milun Jovanovic. "SADRŽAJ METALA U ZEMLJIŠTU I ODABRANIM BILJKAMA NA JALOVIŠTU FLOTACIJE RUDNIK DOO „RUDNIK"". W XXVI savetovanje o biotehnologiji sa međunarodnim učešćem. University of Kragujevac, Faculty of Agronomy, 2021. http://dx.doi.org/10.46793/sbt26.501b.
Pełny tekst źródłaRaporty organizacyjne na temat "Bioaccumulation"
Bridges, Todd S., i Charles H. Lutz. Interpreting Bioaccumulation Data with the Environmental Residue-Effects Database. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1999. http://dx.doi.org/10.21236/ada362932.
Pełny tekst źródłaFarrar, J. D., Guilherme Lotufo i Jerre Sims. Development of a Bioaccumulation Test Method with the Amphipod Leptocheirus plumulosus. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2011. http://dx.doi.org/10.21236/ada540712.
Pełny tekst źródłaFisher, Nicholas S. Bioaccumulation and Trophic Transfer of Long-Lived Radionuclides in Arctic Plankton. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1996. http://dx.doi.org/10.21236/ada337290.
Pełny tekst źródłaSteevens, Jeffery A., i Peter F. Landrum. DREDGING RESEARCH: Assessing Significance of Contaminant Bioaccumulation: A Biological-Effects-Based Approach. Fort Belvoir, VA: Defense Technical Information Center, marzec 2002. http://dx.doi.org/10.21236/ada402267.
Pełny tekst źródłaYoung, J. S. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel. Office of Scientific and Technical Information (OSTI), lipiec 1986. http://dx.doi.org/10.2172/5528993.
Pełny tekst źródłaMcFarland, Victor A., Joan U. Clarke i Robert M. Engler. Analysis of Uncertainty in TBP Estimation of PAH Bioaccumulation Potential in Sediments. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1999. http://dx.doi.org/10.21236/ada367678.
Pełny tekst źródłaGustavson, Karl. Verifying Food Web Bioaccumulation Models by Tracking Fish Exposure and Contaminant Uptake. Fort Belvoir, VA: Defense Technical Information Center, marzec 2012. http://dx.doi.org/10.21236/ada568618.
Pełny tekst źródłaPitt, Jordan A., Neelakanteswar Aluru i Hahn Hahn. Supplemental materials for book chapter: Microplastics in Marine Food Webs. Woods Hole Oceanographic Institution, grudzień 2022. http://dx.doi.org/10.1575/1912/29556.
Pełny tekst źródłaAdams, Marshall, Craig C. Brandt i Allison M. Fortner. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010. Office of Scientific and Technical Information (OSTI), maj 2012. http://dx.doi.org/10.2172/1045859.
Pełny tekst źródłaBenemann, J. R., i E. W. Wilde. Literature review on the use of bioaccumulation for heavy metal removal and recovery. Office of Scientific and Technical Information (OSTI), luty 1991. http://dx.doi.org/10.2172/5787800.
Pełny tekst źródła