Gotowa bibliografia na temat „Bio-oil energy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Bio-oil energy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Bio-oil energy"
Chen, Lihao, i Kunio Yoshikawa. "Bio-oil upgrading by cracking in two-stage heated reactors". AIMS Energy 6, nr 1 (2018): 203–315. http://dx.doi.org/10.3934/energy.2018.1.203.
Pełny tekst źródłaN. Tande, Lifita, i Valerie Dupont. "Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling". AIMS Energy 4, nr 1 (2016): 68–92. http://dx.doi.org/10.3934/energy.2016.1.68.
Pełny tekst źródłaAmin, Rafiqi Rajauddin, Rimbi Rodiyana Sova, Dewinta Intan Laily i Dina Kartika Maharani. "STUDI POTENSI LIMBAH TEMBAKAU MENJADI BIO-OIL MENGGUNAKAN METODE FAST-PYROLYSIS SEBAGAI ENERGI TERBARUKAN". Jurnal Kimia Riset 5, nr 2 (7.12.2020): 151. http://dx.doi.org/10.20473/jkr.v5i2.22513.
Pełny tekst źródłaRahmatullah, Rizka Wulandari Putri i Enggal Nurisman. "Produksi bio-oil dari limbah kulit durian dengan proses pirolisis lambat". Jurnal Teknik Kimia 25, nr 2 (1.07.2019): 50–53. http://dx.doi.org/10.36706/jtk.v25i2.425.
Pełny tekst źródłaSeo, Hyoung-Ju, Ha-na Kim i Eui-Chan Jeon. "Economic effects of the liquid biofuel industry in South Korea using input–output analysis". Energy & Environment 31, nr 3 (10.09.2019): 424–39. http://dx.doi.org/10.1177/0958305x19874317.
Pełny tekst źródłaFeng, Ping, Jie Li, Jinyu Wang, Huan Wang i Zhiqiang Xu. "Effect of Bio-Oil Species on Rheological Behaviors and Gasification Characteristics of Coal Bio-Oil Slurry Fuels". Processes 8, nr 9 (26.08.2020): 1045. http://dx.doi.org/10.3390/pr8091045.
Pełny tekst źródłaChen, Jie, Ye Xi Zhong i Cai Ying Ni. "Energy Supply by Energy Forest in Enköping Sweden". Advanced Materials Research 347-353 (październik 2011): 1354–57. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.1354.
Pełny tekst źródłaAbnisa, Faisal, Arash Arami-Niya, W. M. A. Wan Daud i J. N. Sahu. "Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes". BioEnergy Research 6, nr 2 (19.02.2013): 830–40. http://dx.doi.org/10.1007/s12155-013-9313-8.
Pełny tekst źródłaYanti, Rina Novia. "Pemanfaatan Limbah Perkebunan Kelapa Sawit Sebagai Sumber Energi Terbarukan". Dinamika Lingkungan Indonesia 10, nr 1 (31.01.2023): 7. http://dx.doi.org/10.31258/dli.10.1.p.7-11.
Pełny tekst źródłaHasanudin, Hasanudin, Wan Ryan Asri, Utari Permatahati, Widia Purwaningrum, Fitri Hadiah, Roni Maryana, Muhammad Al Muttaqii i Muhammad Hendri. "Conversion of crude palm oil to biofuels via catalytic hydrocracking over NiN-supported natural bentonite". AIMS Energy 11, nr 2 (2023): 197–212. http://dx.doi.org/10.3934/energy.2023011.
Pełny tekst źródłaRozprawy doktorskie na temat "Bio-oil energy"
Puy, Marimon Neus. "Integrated sustainability analysis of innovative uses of forest biomass. Bio-oil as an energy vector". Doctoral thesis, Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/10803/48708.
Pełny tekst źródłaThis research offers a multidisciplinary approach, from the environmental, social, economic and technological standpoint, to study different novel uses of forest biomass using different methodologies such as IA‐Focus Groups, Life Cycle Assessment and experimental in a pyrolysis pilot plant. First, an integrated assessment of forest biomass systems by focus groups methodology is carried out to identify what political, social and environmental barriers have prevented integrated forest biomass systems to be further developed in the Mediterranean context. Results show that while the opportunities and stakes are high, specific socio‐ecologic factors, such as property regimes, low productivity of Mediterranean forests, weak institutional capacity, logistics and supply difficulties and the lack of economic profitability of forest products, need to be taken into account if forest biomass is to contribute decisively to securing renewable sources of energy in Europe, integrating landscape planning with resource policies or mitigating climate change. Second, a life cycle assessment of a gasification plant using forest biomass and post‐consumer wood is performed. This study shows that forest biomass needs higher energy requirements due to mainly an additional drying stage in order to comply with the gasification demands. Finally, technological aspects are investigated by studying biomass pyrolysis. An application of the Distributed Activation Energy Model (DAEM) to biomass and biomass constituents’ devolatilisation is performed to study the thermal decomposition of biomass. Next, pine woodchips pyrolysis is carried out in an auger reactor pilot plant (10 kg/h) to study the optimal operation conditions (reaction temperature, solid residence time and mass flow rate) and to characterize the properties of the products obtained. Results show that complete woodchip pyrolysis can be achieved in the auger reactor and the greatest yields for liquid production (59%) and optimum product characterisation are obtained at the lowest temperature studied (773 K) applying solid residence times longer than 2 minutes. Bio‐oil GC/MS characterisation shows that the most abundant compounds are volatile polar compounds, phenols and benzenediols. Very few differences can be observed in the physical properties of the bio‐oil samples regardless of the operating conditions, and these properties are similar to bio‐oil obtained in other auger reactors. Energy balances of the pyrolysis process in the pilot plant and in a scaled up auger reactor mobile plant (1500 kg/h) show that a drying unit and a char combustor are needed if the pyrolysis has to be performed in a mobile plant, even though the process is energy‐independent when moisture content is lower than 6%. The economic assessment shows that total costs of producing bio‐oil in the scaled‐up pilot plant is between 269 and 289 €/m3 depending on the biomass cost (40‐50€/ton). The break‐even point of the pyrolysis plant is 116 €/barrel when the biomass is purchased at 50 €/ton and 108 €/barrel when the biomass cost is 40 €/ton. In the long term, bio‐oil offers great potential as an energy vector and in a biorefinery scenario, a novel approach that is studied by performing microwave‐assisted dissolution of wood in ionic liquids. On the whole, these novel uses offer great opportunity for the Mediterranean forestry sector, since they offer value‐added products such as bio‐oil. Bio‐oil represents a new energy carrier, which is as versatile as oil and which may be the basis for a new generation of secondgeneration biofuels and, in turn, raw material for biorefineries. This dissertation is also related to social sustainability by suggesting actions and proposals related to local development and the network economy, as well as facilitating decision‐making processes, which help to make a step forward to a global and integral knowledge of sustainability.
Silva, João Paulo da. "Caracterização da casca de café (coffea arábica, L) in natura, e de seus produtos obtidos pelo processo de pirólise em reator mecanicamente agitado". [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263770.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-20T08:12:42Z (GMT). No. of bitstreams: 1 Silva_JoaoPauloda_M.pdf: 4733188 bytes, checksum: eafa56a24fccf56e0480ae89bf0d28cb (MD5) Previous issue date: 2012
Resumo: O café é um importante produto na balança comercial brasileira e seu processamento gera a casca como um resíduo. O objetivo deste trabalho foi a caracterização física, termoquímica e fluidodinâmica da casca de café (coffea arábica, L) visando sua aplicação em processo de pirólise convencional em reator mecanicamente agitado e posterior caracterização das frações líquida e sólida geradas. O trabalho envolveu as seguintes etapas: (i) caracterização física e termoquímica da casca de café moída; (ii) ensaios fluidodinâmicos no leito contendo mistura binária casca de café-areia (5% de biomassa na mistura); (iii) ensaios de pirólise em reator mecanicamente agitado; e (iv) caracterização das frações sólida e líquida geradas no processo de pirólise. A etapa de caracterização das partículas envolveu a determinação da análise granulométrica, esfericidade, massas específicas, razão de Hausner, análise elementar, análise imediata, poder calorífico, análise termogravimétrica e diferencial térmica, análises da composição das cinzas e análise do teor de hemicelulose, celulose e lignina. Os ensaios de pirólise foram realizados seguindo um planejamento experimental composto central rotacional com objetivo de avaliar a influência da taxa de aquecimento (8 a 22 °C/min) e do tempo de estabilidade entre os estágios de aquecimento (1,2 a 6,8 min) sobre o rendimento da fração líquida. O maior rendimento da fração líquida foi de 56,5 %, obtido em uma taxa de aquecimento de 22°C/min e tempo de estabilidade entre os estágios de aquecimento de 4 min. Na etapa de caracterização do carvão vegetal gerado foram determinadas as massas especificas, análise elementar, análise imediata, poder calorífico, análise termogravimétrica e diferencial térmica, além da determinação da velocidade mínima de fluidização no leito contendo a mistura carvão-areia (5% de biomassa na mistura). A fração líquida foi submetida à análise de umidade, pH, poder calorífico e cromatografia gasosa acoplada a espectrometria de massa. Os resultados dos ensaios fluidodinâmicos mostraram que a presença de 5% (em massa) de casca de café no leito provoca o aumento da velocidade de mínima fluidização em 45%. Foi verificado que a casca de café possui um grande potencial como fonte energética para aplicação em processos de pirólise em função das propriedades do carvão e do líquido gerado em temperaturas superiores a 300oC. A composição e teor de cinzas da casca de café também fazem do carvão uma boa opção como fertilizante em função dos nutrientes presentes. Em todas as frações líquidas geradas foram observados compostos com aplicações industriais, mostrando que o óleo obtido através da pirólise da casca de café possui potencial não só como combustível, mas também como fonte de componentes para a indústria química
Abstract: Coffee is an important product in the Brazilian commercial balance and its processing generates husks as waste. In order to increase information available about coffee husks biomass and its energetic potential, this work presents an experimental study including: (i) physical and thermo-chemical characterization of grinded coffee husks; (ii) hydrodynamics tests to minimum fluidization velocity determination of the binary mixture coffee husks-sand (5% weight fraction of biomass); (iii) pyrolysis tests in a mechanically agitated bed; and (iv) characterization of pyrolysis solid and liquid products. The particle characterization step included the determination of particle size distribution, sphericity, densities, Hausner ratio, ultimate and proximate analysis, heating value, thermo-gravimetric analysis, thermo-differential analysis, ash composition, and hemicelluloses, cellulose and lignin content. The pyrolysis tests were carried out following a central composite rotate design of experiments in order to evaluate the heating rate (from 8 to 22oC/min) and the time between the heating stages (from 1.2 to 6.8min) on the bio oil yield. The bio-oil greatest yield was 56.5% that was obtained using a heating rate of 22oC/min and time between the heating stages of 4min. The bio-char characterization involved density, ultimate and proximate analyses, heating value, thermo-gravimetric analysis, differential thermal analyses and determination of the minimum fluidization velocity of the char-sand mixture (5% weight fraction of biomass). The liquid fraction was submitted to moisture, pH, heating value and gas chromatography (using a mass spectrometer) analysis. Results from hydrodynamics studies show that the presence of 5% biomass in the bed material increases the minimum fluidized bed velocity about 45%. Pyrolysis results show that coffee husks presents a good potential as feedstock to the process due to char and bio-oil (fractions obtained at temperatures higher than 300oC) properties. Additionally, results from ash characterization showed that the bio-char produced presents a good potential as fertilizer. High values chemical compounds were identified in the produced liquid fractions, showing that this product presents high potential, not only as a fuel, but also as a source of chemical compounds to the chemical industry
Mestrado
Termica e Fluidos
Mestre em Engenharia Mecânica
Danje, Stephen. "Fast pyrolysis of corn residues for energy production". Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17822.
Pełny tekst źródłaENGLISH ABSTRACT: Increasing oil prices along with the climate change threat have forced governments, society and the energy sector to consider alternative fuels. Biofuel presents itself as a suitable replacement and has received much attention over recent years. Thermochemical conversion processes such as pyrolysis is a topic of interest for conversion of cheap agricultural wastes into clean energy and valuable products. Fast pyrolysis of biomass is one of the promising technologies for converting biomass into liquid fuels and regarded as a promising feedstock to replace petroleum fuels. Corn residues, corn cob and corn stover, are some of the largest agricultural waste types in South Africa amounting to 8 900 thousand metric tonnes annually (1.7% of world corn production) (Nation Master, 2005). This study looked at the pyrolysis kinetics, the characterisation and quality of by-products from fast pyrolysis of the corn residues and the upgrading of bio-oil. The first objective was to characterise the physical and chemical properties of corn residues in order to determine the suitability of these feedstocks for pyrolytic purposes. Secondly, a study was carried out to obtain the reaction kinetic information and to characterise the behaviour of corn residues during thermal decomposition. The knowledge of biomass pyrolysis kinetics is of importance in the design and optimisation of pyrolytic reactors. Fast pyrolysis experiments were carried out in 2 different reactors: a Lurgi twin screw reactor and a bubbling fluidised bed reactor. The product yields and quality were compared for different types of reactors and biomasses. Finally, a preliminary study on the upgrading of bio-oil to remove the excess water and organics inorder to improve the quality of this liquid fuel was performed. Corn residues biomass are potential thermochemical feedstocks, with the following properties (carbon 50.2 wt. %, hydrogen 5.9 wt. % and Higher heating value 19.14 MJ/kg) for corn cob and (carbon 48.9 wt. %, hydrogen 6.01 wt. % and Higher heating value 18.06 MJ/kg) for corn stover. Corn cobs and corn stover contained very low amounts of nitrogen (0.41-0.57 wt. %) and sulphur (0.03-0.05 wt. %) compared with coal (nitrogen 0.8-1.9 wt. % and sulphur 0.7-1.2 wt. %), making them emit less sulphur oxides than when burning fossil fuels. The corn residues showed three distinct stages in the thermal decomposition process, with peak temperature of pyrolysis shifting to a higher value as the heating rate increased. The activation energies (E) for corn residues, obtained by the application of an iso-conversional method from thermogravimetric tests were in the range of 220 to 270 kJ/mol. The products obtained from fast pyrolysis of corn residues were bio-oil, biochar, water and gas. Higher bio-oil yields were produced from fast pyrolysis of corn residues in a bubbling fluidised bed reactor (47.8 to 51.2 wt. %, dry ash-free) than in a Lurgi twin screw reactor (35.5 to 37 wt. %, dry ash-free). Corn cobs produced higher bio-oil yields than corn stover in both types of reactors. At the optimised operating temperature of 500-530 °C, higher biochar yields were obtained from corn stover than corn cobs in both types of reactors. There were no major differences in the chemical and physical properties of bio-oil produced from the two types of reactors. The biochar properties showed some variation in heating values, carbon content and ash content for the different biomasses. The fast pyrolysis of corn residues produced energy products, bio-oil (Higher heating value = 18.7-25.3 MJ/kg) and biochar (Higher heating value = 19.8-29.3 MJ/kg) comparable with coal (Higher heating value = 16.2-25.9 MJ/kg). The bio-oils produced had some undesirable properties for its application such as acidic (pH 3.8 to 4.3) and high water content (21.3 to 30.5 wt. %). The bio-oil upgrading method (evaporation) increased the heating value and viscosity by removal of light hydrocarbons and water. The corn residues biochar produced had a BET Brynauer-Emmet-Teller (BET) surface area of 96.7 to 158.8 m2/g making it suitable for upgrading for the manufacture of adsorbents. The gas products from fast pyrolysis were analysed by gas chromatography (GC) as CO2, CO, H2, CH4, C2H4, C2H6, C3H8 and C5+ hydrocarbons. The gases had CO2 and CO of more than 80% (v/V) and low heating values (8.82-8.86 MJ/kg).
AFRIKAANSE OPSOMMING: Die styging in olie pryse asook dreigende klimaatsveranderinge het daartoe gelei dat regerings, die samelewing asook die energie sektor alternatiewe energiebronne oorweeg. Biobrandstof as alternatiewe energiebron het in die afgope paar jaar redelik aftrek gekry. Termochemiese omskakelingsprosesse soos pirolise word oorweeg vir die omskakeling van goedkoop landbou afval na groen energie en waardevolle produkte. Snel piroliese van biomassa is een van die mees belowende tegnologië vir die omskakeling van biomassa na vloeibare brandstof en word tans gereken as ’n belowende kandidaat om petroleum brandstof te vervang. Mielieafval, stronke en strooi vorm ’n reuse deel van die Suid Afrikaanse landbou afval. Ongeveer 8900 duisend metrieke ton afval word jaarliks geproduseer wat optel na ongeveer 1.7% van die wêreld se mielie produksie uitmaak (Nation Master, 2005). Hierdie studie het gekk na die kinetika van piroliese, die karakterisering en kwaliteit van by-produkte van snel piroliese afkomstig van mielie-afval asook die opgradering van biobrandstof. Die eerste mikpunt was om die fisiese en chemiese karakteristieke van mielie-afval te bepaal om sodoende die geskiktheid van hierdie afval vir die gebruik tydens piroliese te bepaal. Tweendens is ’n kinetiese studie onderneem om reaksie parameters te bepaal asook die gedrag tydens termiese ontbinding waar te neem. Kennis van die piroliese kinetika van biomassa is van belang juis tydens die ontwerp en optimering van piroliese reaktore. Snel piroliese ekspermente is uitgevoer met behulp van twee verskillende reaktore: ’n Lurgi twee skroef reaktor en ’n borrelende gefluidiseerde-bed reaktor. Die produk opbrengs en kwaliteit is vergelyk. Eindelik is ’n voorlopige studie oor die opgradering van bio-olie uitgevoer deur te kyk na die verwydering van oortollige water en organiese materiaal om die kwaliteit van hierdie vloeibare brandstof te verbeter. Biomassa afkomstig van mielie-afval is ’n potensiële termochemiese voerbron met die volgende kenmerke: mielie stronke- (C - 50.21 massa %, H – 5.9 massa %, HHV – 19.14 MJ/kg); mielie strooi – (C – 48.9 massa %, H – 6.01 massa %, HHV – 18.06 MJ/kg). Beide van hierdie materiale bevat lae hoeveelhede N (0.41-0.57 massa %) and S (0.03-0.05 massa %) in vergelyking met steenkool N (0.8-1.9 massa %) and S (0.7-1.2 massa %). Dit beteken dat hieride bronne van biomassa laer konsentrasies van swael oksiedes vrystel in vergelyking met fossielbrandstowwe. Drie kenmerkende stadia is waargeneem tydens die termiese afbraak van mielie-afval, met die temperatuur piek van piroliese wat skuif na ’n hoër temperatuur soos die verhittingswaarde toeneem. Die waargenome aktiveringsenergie (E) van mielie-afval bereken met behulp van die iso-omskakelings metode van TGA toetse was in die bestek: 220 tot 270 kJ/mol. Die produkte verkry deur Snel Piroliese van mielie-afval was bio-olie, bio-kool en gas. ’n Hoër opbrengs van bio-olie is behaal tydens Snel Piroliese van mielie-afval in die borrelende gefluidiseerde-bed reakctor (47.8 na 51.2 massa %, droog as-vry) in vergelyking met die Lurgi twee skroef reakctor (35.5 na 37 massa %, droog as-vry). Mielie stronke sorg vir ’n hoër opbrengs van bio-olie as mielie strooi in beide reaktore. By die optimum bedryfskondisies is daar in beide reaktor ’n hoër bio-kool opbrengs verkry van mielie stingels teenoor mielie stronke. Geen aansienlike verskille is gevind in die chemise en fisiese kenmerke van van die bio-olie wat geproduseer is in die twee reaktore nie. Daar is wel variasie getoon in die bio-kool kenmerkte van die verskillende Snel Piroliese prosesse. Snel piroliese van mielie-afval lewer energie produkte, bio-olie (HVW = 18.7-25.3MJ/kg) en bio-kool (HVW = 19.8-29.3 MJ/kg) vergelykbaar met steenkool (HVW = 16.2-25.9 MJ/kg). Die bio-olies geproduseer het sommige ongewenste kenmerke getoon byvoorbeeld suurheid (pH 3.8-4.3) asook hoë water inhoud (21.3 – 30.5 massa %). Die metode (indamping) wat gebruik is vir die opgradering van bio-olie het gelei tot die verbetering van die verhittingswaarde asook die toename in viskositeit deur die verwydering van ligte koolwaterstowwe en water. Die mielie-afval bio-kool toon ’n BET (Brunauer-Emmet-Teller) oppervlakte area van 96.7-158.8 m2/g wat dit toepaslik maak as grondstof vir absorbante. The gas geproduseer tydens Snel Piroliese is geanaliseer met behulp van gas chromotografie (GC) as CO2, CO, H2, CH4, C2H4, C2H6, C3H8 and C5+ koolwaterstowwe. Die vlak van CO2 en CO het 80% (v/V) oorskry en met lae verhittingswaardes (8.82-8.86 MJ/kg).
Correia, Lígia Araújo Ramos. "Estudo do processo de pirólise para o aproveitamento sustentável de lodo digerido doméstico". Universidade Federal do Tocantins, 2013. http://hdl.handle.net/11612/541.
Pełny tekst źródłaWith the growing demand for energy in the world, the search for new sources of energy have motivated new studies about renewable energy sources that allow us to replace fossil fuels gradually, as they are responsible for higher levels of pollutants emission if compared to biofuels. Population growth together with the improvement of sewage treatment efficiency, that directly impacts the growth of sewage sludge production, which is the main solid waste generated in the Sewage Treatment Stations. The sludge can be used in technological processes, like pyrolysis, gasification and combustion, in order to produce alternative energy. The pyrolysis applied in sludge is a promising technology that favor the production of four fractions: biooil (organic liquid fraction), water fraction, solid fraction and gas fraction, showing a high fuel potential. This paper aims to evaluate the pyrolysis process applied to domestic sludge as an alternative source of energy and identify the process conditions that resulted in better efficiency of the biooil produced.
Roy, Michael Joseph. "Hydrodeoxygenation of lignin model compounds via thermal catalytic reactions". Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45752.
Pełny tekst źródłaGan, Jing. "Hydrothermal conversion of lignocellulosic biomass to bio-oils". Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13768.
Pełny tekst źródłaDepartment of Biological and Agricultural Engineering
Wenqiao Yuan
Donghai Wang
Corncobs were used as the feedstock to investigate the effect of operating conditions and crude glycerol (solvent) on bio-oil production. The highest bio-oil yield of 33.8% on the basis of biomass dry weight was obtained at 305°C, 20 min retention time, 10% biomass content, 0.5% catalyst loading. At selected conditions, bio-oil yield based on the total weight of corn cobs and crude glycerol increased to 36.3% as the crude glycerol/corn cobs ratio increased to 5. Furthermore, the optimization of operating conditions was conducted via response surface methodology. A maximum bio-oil yield of 41.3% was obtained at 280°C, 12min, 21% biomass content, and 1.56% catalyst loading. A highest bio-oil carbon content of 74.8% was produced at 340°C with 9% biomass content. A maximum carbon recovery of 25.2% was observed at 280°C, 12min, 21% biomass content, and 1.03% catalyst loading. The effect of biomass ecotype and planting location on bio-oil production were studied on big bluestems. Significant differences were found in the yield and elemental composition of bio-oils produced from big bluestem of different ecotypes and/or planting locations. Generally, the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also had the highest carbon and lowest oxygen contents, which were not affected by the planting location. In order to better understand the mechanisms of hydrothermal conversion, the interaction effects between cellulose, hemicellulose and lignin in hydrothermal conversion were studied. Positive interaction between cellulose and lignin, but negative interaction between cellulose and hemicellulose were observed. No significant interaction was found between hemicelluose and lignin. Hydrothermal conversion of corncobs, big bluestems, switchgrass, cherry, pecan, pine, hazelnut shell, and their model biomass also were conducted. Bio-oil yield increased as real biomass cellulose and hemicellulose content increased, but an opposite trend was observed for low lignin content model biomass.
Hugo, Thomas Johannes. "Pyrolysis of sugarcane bagasse". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5238.
Pełny tekst źródłaENGLISH ABSTRACT: The world’s depleting fossil fuels and increasing greenhouse gas emissions have given rise to much research into renewable and cleaner energy. Biomass is unique in providing the only renewable source of fixed carbon. Agricultural residues such as Sugarcane Bagasse (SB) are feedstocks for ‘second generation fuels’ which means they do not compete with production of food crops. In South Africa approximately 6 million tons of raw SB is produced annually, most of which is combusted onsite for steam generation. In light of the current interest in bio-fuels and the poor utilization of SB as energy product in the sugar industry, alternative energy recovery processes should be investigated. This study looks into the thermochemical upgrading of SB by means of pyrolysis. Biomass pyrolysis is defined as the thermo-chemical decomposition of organic materials in the absence of oxygen or other reactants. Slow Pyrolysis (SP), Vacuum Pyrolysis (VP), and Fast Pyrolysis (FP) are studied in this thesis. Varying amounts of char and bio-oil are produced by the different processes, which both provide advantages to the sugar industry. Char can be combusted or gasified as an energy-dense fuel, used as bio-char fertilizer, or upgraded to activated carbon. High quality bio-oil can be combusted or gasified as a liquid energy-dense fuel, can be used as a chemical feedstock, and shows potential for upgrading to transport fuel quality. FP is the most modern of the pyrolysis technologies and is focused on oil production. In order to investigate this process a 1 kg/h FP unit was designed, constructed and commissioned. The new unit was tested and compared to two different FP processes at Forschungszentrum Karlsruhe (FZK) in Germany. As a means of investigating the devolatilization behaviour of SB a Thermogravimetric Analysis (TGA) study was conducted. To investigate the quality of products that can be obtained an experimental study was done on SP, VP, and FP. Three distinct mass loss stages were identified from TGA. The first stage, 25 to 110°C, is due to evaporation of moisture. Pyrolitic devolatilization was shown to start at 230°C. The final stage occurs at temperatures above 370°C and is associated with the cracking of heavier bonds and char formation. The optimal decomposition temperatures for hemicellulose and cellulose were identified as 290°C and 345°C, respectively. Lignin was found to decompose over the entire temperature range without a distinct peak. These results were confirmed by a previous study on TGA of bagasse. SP and VP of bagasse were studied in the same reactor to allow for accurate comparison. Both these processes were conducted at low heating rates (20°C/min) and were therefore focused on char production. Slow pyrolysis produced the highest char yield, and char calorific value. Vacuum pyrolysis produced the highest BET surface area chars (>300 m2/g) and bio-oil that contained significantly less water compared to SP bio-oil. The short vapour residence time in the VP process improved the quality of liquids. The mechanism for pore formation is improved at low pressure, thereby producing higher surface area chars. A trade-off exists between the yield of char and the quality thereof. FP at Stellenbosch University produced liquid yields up to 65 ± 3 wt% at the established optimal temperature of 500°C. The properties of the bio-oil from the newly designed unit compared well to bio-oil from the units at FZK. The char properties showed some variation for the different FP processes. At the optimal FP conditions 20 wt% extra bio-oil is produced compared to SP and VP. The FP bio-oil contained 20 wt% water and the calorific value was estimated at 18 ± 1 MJ/kg. The energy per volume of FP bio-oil was estimated to be at least 11 times more than dry SB. FP was found to be the most effective process for producing a single product with over 60% of the original biomass energy. The optimal productions of either high quality bio-oil or high surface area char were found to be application dependent.
AFRIKAANSE OPSOMMING: As gevolg van die uitputting van fossielbrandstofreserwes, en die toenemende vrystelling van kweekhuisgasse word daar tans wêreldwyd baie navorsing op hernubare en skoner energie gedoen. Biomassa is uniek as die enigste bron van hernubare vaste koolstof. Landbouafval soos Suikerriet Bagasse (SB) is grondstowwe vir ‘tweede generasie bio-brandstowwe’ wat nie die mark van voedselgewasse direk affekteer nie. In Suid Afrika word jaarliks ongeveer 6 miljoen ton SB geproduseer, waarvan die meeste by die suikermeulens verbrand word om stoom te genereer. Weens die huidige belangstelling in bio-brandstowwe en ondoeltreffende benutting van SB as energieproduk in die suikerindustrie moet alternatiewe energie-onginningsprosesse ondersoek word. Hierdie studie is op die termo-chemiese verwerking van SB deur middel van pirolise gefokus. Biomassa pirolise word gedefinieer as die termo-chemiese afbreking van organiese bio-materiaal in die afwesigheid van suurstof en ander reagense. Stadige Pirolise (SP), Vakuum Pirolise (VP), en Vinnige Pirolise word in hierdie tesis ondersoek. Die drie prosesse produseer veskillende hoeveelhede houtskool en bio-olie wat albei voordele bied vir die suikerindustrie. Houtskool kan as ‘n vaste energie-digte brandstof verbrand of vergas word, as bio-houtskoolkompos gebruik word, of kan verder tot geaktiveerde koolstof geprosesseer word. Hoë kwaliteit bio-olie kan verbrand of vergas word, kan as bron vir chemikalië gebruik word, en toon potensiaal om in die toekoms opgegradeer te kan word tot vervoerbrandstof kwaliteit. Vinnige pirolise is die mees moderne pirolise tegnologie en is op bio-olie produksie gefokus. Om die laasgenoemde proses te toets is ‘n 1 kg/h vinnige pirolise eenheid ontwerp, opgerig en in werking gestel. Die nuwe pirolise eenheid is getoets en vegelyk met twee verskillende vinnige pirolise eenhede by Forschungszentrum Karlsruhe (FZK) in Duitsland. Termo-Gravimetriese Analise (TGA) is gedoen om die ontvlugtigingskenmerke van SB te bestudeer. Eksperimentele werk is verrig om die kwaliteit van produkte van SP, VP, vinnige pirolise te vergelyk. Drie duidelike massaverlies fases van TGA is geïdentifiseer. Die eerste fase (25 – 110°C) is as gevolg van die verdamping van vog. Pirolitiese ontvlugtiging het begin by 230°C. Die finale fase (> 370°C) is met die kraking van swaar verbindings en die vorming van houtskool geassosieer. Die optimale afbrekingstemperatuur vir hemisellulose en sellulose is as 290°C en 345°C, respektiewelik, geïdentifiseer. Daar is gevind dat lignien stadig oor die twede en derde fases afgebreek word sonder ‘n duidelike optimale afbrekingstemperatuur. Die resultate is deur vorige navorsing op TGA van SB bevestig. SP en VP van bagasse is in dieselfde reaktor bestudeer, om ‘n akkurate vergelyking moontlik te maak. Beide prosesse was by lae verhittingstempo’s (20°C/min) ondersoek, wat gevolglik op houtskoolformasie gefokus is. SP het die hoogste houtskoolopbrengs, met die hoogste verbrandingsenergie, geproduseer. VP het hootskool met die hoogste BET oppervlakarea geproduseer, en die bio-olie was weens ‘n dramatiese afname in waterinhoud van beter gehalte. Die meganisme vir die vorming van ‘n poreuse struktuur word deur lae atmosferiese druk verbeter. Daar bestaan ‘n inverse verband tussen die kwantiteit en kwaliteit van die houtskool. Vinnige pirolise by die Universiteit van Stellenbosch het ‘n bio-olie opbrengs van 65 ± 3 massa% by ‘n vooraf vasgestelde optimale temperatuur van 500°C geproduseer. Die eienskappe van bio-olie wat deur die nuwe vinnige pirolise eenheid geproduseer is het goed ooreengestem met die bio-olie afkomstig van FZK se pirolise eenhede. Die houtskool eienskappe van die drie pirolise eenhede het enkele verskille getoon. By optimale toestande vir vinnige pirolise word daar 20 massa% meer bio-olie as by SP en VP geproduseer. Vinnige pirolise bio-olie het ‘n waterinhoud van 20 massa% en ‘n verbrandingswarmte van 18 ± 1 MJ/kg. Daar is gevind dat ten opsigte van droë SB die energie per enheidsvolume van bio-olie ongeveer 11 keer meer is. Vinnige pirolise is die mees doeltreffende proses vir die vervaardiging van ‘n produk wat meer as 60% van die oorspronklike biomassa energie bevat. Daar is gevind dat die optimale hoeveelhede van hoë kwaliteit bio-olie en hoë oppervlakarea houtskool doelafhanklik is.
Abdullah, Hanisom binti. "High energy density fuels derived from mallee biomass: fuel properties and implications". Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/2259.
Pełny tekst źródłaWilliams, Alexander W. "An investigation of the kinetics for the fast pyrolysis of loblolly pine woody biomass". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41093.
Pełny tekst źródłaRogers, John G. "A techno-economic assessment of the use of fast pyrolysis bio-oil from UK energy crops in the production of electricity and combined heat and power". Thesis, Aston University, 2009. http://publications.aston.ac.uk/15376/.
Pełny tekst źródłaKsiążki na temat "Bio-oil energy"
Malaysia, Lembaga Minyak Sawit, red. Proceedings of chemistry, processing technology & bio-energy conference: PIPOC 2011 International Palm Oil Congress. Kuala Lumpur, Malaysia: Malaysian Palm Oil Board, Ministry of Plantation Industries and Commodities, Malaysia, 2011.
Znajdź pełny tekst źródłaMalaysia, Lembaga Minyak Sawit, red. Proceedings of chemistry, processing technology & bio energy conference: PIPOC 2009 International Palm Oil Congress, palm oil, balancing ecologics with economics. Kuala Lumpur, Malaysia: Malaysian Palm Oil Board, 2009.
Znajdź pełny tekst źródłaKoppelaar, Rembrandt, i Willem Middelkoop. The Tesla Revolution. NL Amsterdam: Amsterdam University Press, 2017. http://dx.doi.org/10.5117/9789462982062.
Pełny tekst źródłaFreitas, Lisiane dos Santos, Roberta Menezes Santos, Diego Fonseca Bispo, Thainara Bovo Massa, Thiago Vinícius Barros, Lucio Cardozo Filho, Alberto Wisniewski Jr. i in. Energia da Biomassa: termoconversão e seus produtos. Brazil Publishing, 2020. http://dx.doi.org/10.31012/978-65-5861-079-3.
Pełny tekst źródłaAn economic analysis of a major bio-fuel program undertaken by OECD countries. [Ottawa]: Agriculture and Agri-Food Canada, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Bio-oil energy"
Awathare, Pranay, Suradipa Choudhury, Supriya Ghule, Amara Lasita, Rudvi Pednekar, Anadhi Panchal, Bhaskar Singh i Abhishek Guldhe. "Algal Biomass for Biodiesel and Bio-oil Production". W Clean Energy Production Technologies, 117–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3582-4_5.
Pełny tekst źródłaSalas, Margarita Rosa Albis, Vladimir Strezov i Hossain M. Anawar. "System Approach to Bio-Oil Production from Microalgae". W Renewable Energy Systems from Biomass, 121–34. Boca Raton: Taylor & Francis, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315153971-8.
Pełny tekst źródłaDinda, Srikanta, Nikhil S. V. Reddy, U. Appala Naidu i S. Girish. "Development of Bio-Based Epoxide from Plant Oil". W Materials, Energy and Environment Engineering, 25–32. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2675-1_3.
Pełny tekst źródłaKedir, Miftah F. "Pyrolysis Bio-oil and Bio-char Production from Firewood Tree Species for Energy and Carbon Storage in Rural Wooden Houses of Southern Ethiopia". W African Handbook of Climate Change Adaptation, 1313–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_183.
Pełny tekst źródłaDalal, Rohit, Roshan Wathore i Nitin Labhasetwar. "Sustainable Production of Biochar, Bio-Gas and Bio-Oil from Lignocellulosic Biomass and Biomass Waste". W Energy, Environment, and Sustainability, 177–205. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8682-5_7.
Pełny tekst źródłaVerma, Anand Mohan, i Nanda Kishore. "Current Advances in Bio-Oil Upgrading: A Brief Discussion". W Sustainable Energy Technology and Policies, 289–313. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7188-1_13.
Pełny tekst źródłaGollakota, Anjani R. K., Malladi D. Subramanyam, Nanda Kishore i Sai Gu. "Upgradation of Bio-oil Derived from Lignocellulose Biomass—A Numerical Approach". W Springer Proceedings in Energy, 197–212. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2773-1_15.
Pełny tekst źródłaVerma, Anand Mohan, i Nanda Kishore. "A Succinct Review on Upgrading of Lignin-Derived Bio-oil Model Components". W Sustainable Energy Technology and Policies, 315–34. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7188-1_14.
Pełny tekst źródłaBagheri, Samira. "Catalytic Upgrading of Bio-oil: Biomass Gasification in the Presence of Catalysts". W Catalysis for Green Energy and Technology, 155–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43104-8_9.
Pełny tekst źródłaXie, Huaqing, Qingbo Yu, Kun Wang, Xinhui Li i Qin Qin. "Thermodynamic and Experimental Study on the Steam Reforming Processes of Bio-oil Compounds for Hydrogen Productio". W Energy Technology 2014, 241–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118888735.ch30.
Pełny tekst źródłaStreszczenia konferencji na temat "Bio-oil energy"
Bahri, Syaiful, Edy Saputra, Irene Detrina, Yusnitawati i Muhdarina. "Bio oil from palm oil industry solid waste". W International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010). IEEE, 2010. http://dx.doi.org/10.1109/esd.2010.5598783.
Pełny tekst źródłaKhumsak, Onarin, Weerapong Wattananoi i Nakorn Worasuwannarak. "Bio-oil production from the torrefied biomass". W 2011 IEEE Conference on Clean Energy and Technology (CET). IEEE, 2011. http://dx.doi.org/10.1109/cet.2011.6041438.
Pełny tekst źródłaJiang, Xiaoxiang, Zhaoping Zhong i Naoko Ellis. "Characterization and Fourier Transform Infrared Spectrum Analysis of Bio-oil/Bio-diesel Emulsion". W 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448718.
Pełny tekst źródłaAhmad, Murni, Laveena Chugani, Cheng Seong Khor i Suzana Yusup. "Simulation of Pyrolytic Bio-Oil Upgrading Into Hydrogen". W 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5644.
Pełny tekst źródłaGuo, Xiujuan, Shurong Wang, Zuogang Guo i Zhongyang Luo. "Properties of Bio-Oil from Alga Fast Pyrolysis". W 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5748790.
Pełny tekst źródłaChenni, H., M. Djeghballou, S. Daba, N. Outili i A. H. Meniai. "Valorization of waste cooking oil into bio-sourced products". W 2022 13th International Renewable Energy Congress (IREC). IEEE, 2022. http://dx.doi.org/10.1109/irec56325.2022.10001971.
Pełny tekst źródłaPradhan, D., i R. K. Singh. "Bio-oil from biomass: Thermal pyrolysis of mahua seed". W 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS). IEEE, 2013. http://dx.doi.org/10.1109/iceets.2013.6533433.
Pełny tekst źródłaGuo, Zuogang, Shurong Wang, Qianqian Yin, Guohui Xu, Zhongyang Luo, Kefa Cen i Torsten H. Fransson. "Catalytic Cracking Characteristics of Bio-Oil Molecular Distillation Fraction". W World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp11057552.
Pełny tekst źródłaGu, Yueling, Zuogang Guo, Lingjun Zhu, Guohui Xu i Shurong Wang. "Experimental Research on Catalytic Esterification of Bio-Oil Volatile Fraction". W 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448436.
Pełny tekst źródłaAlrashidi, Hessah, Ahmed Farid Ibrahim i Hisham Nasr-El-Din. "Bio-Oil Dispersants Effectiveness on AsphalteneSludge During Carbonate Acidizing Treatment". W SPE Trinidad and Tobago Section Energy Resources Conference. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/191165-ms.
Pełny tekst źródła