Rozprawy doktorskie na temat „Bio hydrogène”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Bio hydrogène”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Papadakis, Michail. "Bio-inspired production of dihydrogen". Electronic Thesis or Diss., Aix-Marseille, 2023. http://www.theses.fr/2023AIXM0061.
Pełny tekst źródłaIn this work, we have synthesized, characterized and tested different series of nickel complexes based on thiocarbazone ligands for their ability to produce hydrogen from two different catalytic processes. The first part of this Ph.D. work describes the use of two new families based on bis-thiosemicarbazone ligands and investigates how appropriate ligand-tailoring can affect electrocatalytic performance for HER. The second part describes the use of a polynuclear nickel complex and how the incorporation of several metallic centers can affect electrocatalysis. In the last part of the manuscript, new photocatalytic systems were developed using carbon nanodots as light harvesters and the series of nickel-thiosemicarbazone complexes as catalytic centers for photo-producing hydrogen
Kamara, Konakpo Parfait. "Stratégies d’utilisation du bio hydrogène pour la technologie PEMFC : utilisation directe". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI037.
Pełny tekst źródłaWith the aim of decarbonizing its energy mix and lowering its CO2 emissions, France has decided to invest massively in the decarbonized production of hydrogen as an energy carrier for mobility and stationary applications [1]. Of the one million ton of hydrogen produced in France, 96% is produced by steam reforming of hydrocarbons. France's strategy is to develop the hydrogen sector by investing in the installation of electrolyzers. What's more, the latest discoveries of huge deposits of natural hydrogen (46 million tons of hydrogen in Lorraine) are creating enthusiasm and expanding the field of prospects. [2]. Another decarbonated hydrogen production sector that is less talked about is the biological sector, which offers great potential for diversifying production routes. Hydrogen from these sources raises the question of its quality for use in mobility or stationary fuel cell systems.The aim of this thesis is to define strategies for the use of bio-hydrogen or natural hydrogen using proton exchange membrane fuel cell (PEMFC) technology, from hydrogen production to electrochemical conversion.The first part consisted in studying the impact of impurities or diluents (N2, Ar, He, CH4, CO2) contained in hydrogen from biological and native processes in a half-cell (gas diffusion electrode, GDE). This study was then extended to a single-cell proton exchange membrane fuel cell. Finally, a laboratory-scale biological reactor was used to produce hydrogen from organic sources by photo fermentation (PF), which was then tested in a GDE. Several electrochemical and physicochemical characterization techniques, such as cyclic voltammetry, chrono amperometry, CO stripping for electroactive surface measurement, scanning and transmission electron microscopy, ion chromatography, etc., were used to assess the performance of the PEMFC fed by bio-hydrogen, and its impact on fuel cell components.The results of the electrode activity for the hydrogen oxidation reaction in GDE revealed mass-transport limitation effects for the mixtures, with a particular behavior observed for the nitrogen mixture, and the methane and carbon dioxide mixtures, which in addition to dilution have a carbon monoxide poisoning effect on the electrode.Next, single-cell tests using H2/Ar, H2/N2 and H2/CO2 mixtures at 30 and 40% H2 by volume for stationary applications revealed greater performance losses for the carbon dioxide mixture, while the argon and nitrogen mixtures performed almost equally well. These performance losses are due to electroactive surface losses.Finally, the production of biohydrogen by PF showed that the choice of biomass, pre-treatment and bacterial strain influenced the quality of the biogas produced and the electrochemical performances obtained from it without purification steps.References[1] « Présentation de la stratégie nationale pour le développement de l’hydrogène décarboné en France ». Consulté le: 11 janvier 2024. [En ligne]. Disponible sur: https://www.economie.gouv.fr/presentation-strategie-nationale-developpement-hydrogene-decarbone-france[2] « Le plus gros gisement d’hydrogène naturel du monde vient d’être découvert en France », SudOuest.fr. Consulté le: 11 janvier 2024. [En ligne]. Disponible sur: https://www.sudouest.fr/economie/energie/le-plus-gros-gisement-d-hydrogene-naturel-du-monde-vient-d-etre-decouvert-en-france-17826239.php
Hartunians, Jordan. "High temperature H2 bio-production in Thermococcales models : setting up bases optimized high pressure solutions". Thesis, Brest, 2020. http://www.theses.fr/2020BRES0033.
Pełny tekst źródłaH2, a promising energetic vector, can be synthesized by Thermococcales. High pressure (HP) could influence the associated metabolism, but was not practically considered. After having screened isolates for assets in substrate degradation and H2 yields, T. barophilus MPT, growing optimally at 40 MPa, was chosen as a model and its metabolism was characterized in an applied context. Methods for HP culture were optimized for H2 studies. Our HP bioreactor for continuous culture underwent major improvements. This 400 mL container, able to maintain corrosive fluids at hydrostatic (up to 120 MPa) and gas (up to 40 MPa) pressures, at up to 150 °C, served to assess H2 production of our strain at high gas pressure. We also created a compressible device for discontinuous leak-free gas-phase incubations, allowing to measure T. barophilus HP H2 production (hydrostatic). HP adaptations of T. barophilus were observed thanks to previous deletions of key genes (mbh, mbs, co-mbh, shI, shII).We refined the roles of each concerned enzyme by assessing growths, end-products (H2, H2S, acetate), and gene expressions of the mutants, at 0.1 and 40 MPa. Additionally, we enhanced H2 tolerance in our model by adaptive laboratory evolution. “Evol”, the ensuing strain acclimatized to H2-saturating conditions for 76 generations, grew in 10% H2, contrarily to the parent strain. To understand such adaptation, we compared both strains’ end-products (H2, H2S, acetate), transcriptomes, and genomes.119 mutations were detected and the H2 metabolism was changed in the new variant. This work underlines the interest of Thermococcales’ piezophily for H2 bio-production and permits to propose optimization strategies
Busselez, Rémi. "Propriétés de fluides vitrifiables bio protecteurs nanoconfinés". Rennes 1, 2008. http://www.theses.fr/2008REN1S057.
Pełny tekst źródłaIt was shown that confinement on a nanometric scale considerably modifies the structure, the thermodynamical and dynamical properties of simple molecular liquids. A large number of studies devoted to pure molecular glass formers in restricted geometries have revealed a complex entanglement of low dimensionality, finite size and surface effects. The current understanding of the dynamics of interfacial or confined liquids must be extended to more complex fluids, in order to be relevant to different domains of technological or biological interest. One of these concerns biopreservation. Indeed, a new level of complexity is awaited for confined bioprotectant solutions, which are multi-component systems with strong and selective H-bond interactions. We have performed a structural and dynamical investigation of the archetype glycerol-trehalose bioprotectant solution confined in silicon unidirectional nanopores. Neutron scattering and solid state NMR experiments have been combined to molecular dynamic simulations. They unambiguously reveal antagonist effects of trehalose concentration and nanoconfinement on the structure and molecular dynamics from the nanosecond time scale to the glassy arrest
Metayé, Romain. "Vers une photoproduction de l'hydrogène par des catalyseurs immobilisés bio-inspirés". Palaiseau, Ecole polytechnique, 2010. http://www.theses.fr/2010EPXX0074.
Pełny tekst źródłaSahyouni, Farah Al. "Impact Thermo-Hydro-Bio-Chemio-Mécanique du stockage géologique souterrain de H₂". Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0297.
Pełny tekst źródłaHydrogen produced from water electrolysis appears to be the best candidate for large- scale geological storage to cover the intermittency of renewable energy. It can be stored either in salt caverns or in porous rocks like saline aquifers and depleted oil and gas reservoirs. This thesis proposes an evaluation of the risk of gas leakage in the case of salt cavities and the risk of biogeochemical alteration of the gas stock in the case of porous reservoir rocks. Rock salt is a polycrystalline material with very low intrinsic permeability in undisturbed zones (around 10-21m2). It sealing capacity is due to the specific features of salt mechanical behavior and gas flow in such unconventional reservoirs (Klinkenberg effect). Deviatoric loading under low confining pressure (1MPa) induces a moderate increase in gas permeability from the dilatancy threshold due to microcracking disturbing the impermeability. So, understanding the complex relationship between permeability evolution and the mechanical and thermal solicitations is important to survey any possible risk of leakage. So, we performed a complete set of laboratory experiments on a rock salt specimen (MDPA in the East region of France). The porosity of the studied rock salt is very low (~1%) and the initial permeability varies over 4.5 orders of magnitude. Klinkenberg effect is only observed for the less damaged samples. The poroelastic coupling is almost negligible. Deviatoric loading under low confining pressure (1MPa) induces a moderate increase in gas permeability from the dilatancy threshold due to microcracking. Measurement of ultrasonic wave velocities during uniaxial compression showed an almost irreversible closure of pre-existing microcracks and the opening of axial microcracks that are perpendicular and parallel to the stress direction allowing a precise determination of the dilatancy threshold. Under higher confining pressure (5MPa), the material becomes fully plastic which practically eliminates damage. Under hydrostatic loading, gas permeability decreases because of the self-healing process. All these results give strong confidence in that underground hydrogen storage in salt caverns is the safest solution. In the case of porous reservoir rocks, hydrogen injection can induce geochemical redox reactions between the fluids and minerals and unwanted consumption of hydrogen stock catalyzed by microorganisms tolerating extreme conditions of deep saline aquifers and reservoirs.To study these phenomena, we developed a new experimental device to simulate the biochemical activity under extreme conditions (T=35°C, PH2=50bar, Pconfinement=200bar). The outflowing gas was automatically sampled with a HP-LP valve and the concentration was measured with a micro-gas chromatograph to quantify any change due to hydrogen bio-consumption. We chose to work on the Vosges sandstone where we incubate the Shewanella putrefaciens bacteria that reduce iron in the presence of hydrogen to produce energy. Its metabolism and performance as hydrogenotrophic bacteria were first tested in batch conditions on a rock powder. Results showed that this type of bacteria can reduce the iron present in the medium using endogenous sources of electrons first then hydrogen in the medium but preferentially dissolved hydrogen. Under triaxial conditions, the bacterial activity doesn’t seem to have a significant impact, whatever the initial hydrogen concentration (70% or 5%) and the sampling frequency (one or three days). Many hypotheses are proposed to explain the observed differences between batch and triaxial conditions: the scarcity of dissolved hydrogen in residual water, the low exchange surface for biogeochemical reactions in the case of solid core samples, the slow kinetic of hydrogen consumption by S. Despite the remaining uncertainties related to our experiments, our preliminary results suggest that the underground storage of pure hydrogen in porous reservoir rocks is not severely threatened by [...]
Arapova, Marina. "Synthesis and properties of the Ni-based catalysts for the valorization of ethanol and glycerol via steam reforming reaction for hydrogen production". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF031/document.
Pełny tekst źródłaThe three catalytic families based on Ni-containing perovskites: massive [LnFe1-x-yNiyMxO3-δ] (Ln=La, Pr; B=Co, Mn, Ru), supported [mLnNi0.9Ru0.1О3/nMg-γ-Al2O3] (Ln = La, Pr) and structured [mLaNi0.9Ru0.1О3/nMg-γ-Al2O3/structured foams] were synthesized, characterized and tested in the reactions of the ethanol and glycerol steam reforming. The effects of the chemical composition and synthesis method on the structural and textural properties, as well as on reducibility of initial samples were evaluated. The preferred use of Pr, Ni and Ru in the catalyst composition was shown for all families. The essential role of the effective γ-Al2O3 support modification with the ≥10 % wt. of Mg introduced by wetness impregnation for the supported catalyst was also proved. Catalysts of the optimal composition providing a high activity in steam reforming of both ethanol and glycerol at T= 650 °С were found: the best massive catalyst based on the PrFe0.6Ni0.3Ru0.1O3 precursor provides high activity for at least 7 hours, which is explained by the ease of their reduction and the oxidation-reduction properties of the praseodymium oxide formed. Supported 10-20% PrNi0.9Ru0.1O3/10-15%Mg-γ-Al2O3 provide the greatest yield of hydrogen (~ 90%) and stability for ~ 20 hours. Structured catalyst based on the metal Ni-Al platelet provides the yield of hydrogen 80-87% in oxy-steam and steam reforming of ethanol in the concentrated mixtures (ethanol concentration of 30%) in a pilot reactor for 40 hours. The results obtained make these structured catalytic systems very promising to use in electrochemical generators based on fuel cells with the use of inexpensive renewable resource – bio-oil
Hendrickx, Johann. "Développement méthodologique pour l'étude des phénomènes d'interaction protéine-glucide". Thesis, Nantes, 2019. http://www.theses.fr/2019NANT1023.
Pełny tekst źródłaA set of methods to study in silico protein carbohydrate interactions, which are essential in many biological processes, are proposed in this study. Based on crystallographic data, it has become possible to study on a large scale the existing interaction modalities between the two molecular entities. A complete statistical study has thus been carried out to determine both the general trends and extreme cases observed in protein-carbohydrate complexes. The characteristics of protein-carbohydrate interactions are thus reported, in particular hydrogen bonds (HB) and the role of water molecules. A program to identify the HBs and reconstitute their hypothetical network(s) is being developed. This includes, in particular, the putative addition of hydrogens, if they are absent from the structure, especially on hydroxyl groups and water molecules. An original strategy for putatively positioning water molecules at protein recognition sites is also described. This strategy aims to allow the development of a protein-carbohydrate molecular docking protocol, as carbohydrates and water molecules share essentially the same HB network. As a result of the many carbohydrate anomalies detected in PDB, a method for identifying and verifying 3D carbohydrate structures has also been developed. It allowed to reduce the statistical noise in this study. About 280 monosaccharides in furanic and pyranic form were thus referenced. The intrinsic flexibility of carbohydrates also led to an in-depth study of the carbohydrate conformations observed in crystallographic structures
Wu, Yu Qian Michelle. "Etude de procédés de conversion de biomasse en eau supercritique pour l'obtention d'hydrogène. : Application au glucose, glycérol et bio-glycérol". Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0007/document.
Pełny tekst źródłaSupercritical water (T > 374 ° C and P > 22.1 MPa) gasification of wet biomass for hydrogen production is investigated. This process converts a renewable resource into a gas, which is mainly composed of hydrogen and hydrocarbons with interesting energy potential, and which can be separated at high pressure. In addition, the greenhouse gas effect of the process is zero or negative. Model biomasses (glucose, glycerol and their mixture) and bio-glycerol, residue from bio-diesel production, have been gasified by different processes: two-scale batch reactors (5 mL and 500 mL) and a continuous gasification system. Supercritical water acts as a reactive solvent, its properties can be adjusted by the choice of the experimental (P, T) couple. The operating parameters, e.g. temperature, pressure, concentration of biomass and alkaline catalysts, reaction time… allow favoring certain reaction mechanisms. In order to characterize the processes, specific analytical protocols have been developed and validated. The intermediates, formed during the heating time in the batch reactors, have been identified. Among the investigated operating parameters, temperature and reaction time have the greatest influence on the hydrogen production in batch reactors. In the presence of catalyst (K2CO3), H2 yields of 1.5 mol/mol glucose and 2 mol/mol glycerol have been respectively observed. The obtained gas contains different proportions of light hydrocarbons and CO2. About 75% of the carbon is converted into gas and liquid (in form of organic and inorganic carbon). The conversion leads also to a solid or oily residue. In the generated solid phase (composed over 90% of C), spherical nanoparticles are observed via electronic microscopy. The hydrogen production from glycerol is improved in the continuous process compared to batch reactors, however, bio-glycerol supercritical water gasification requests process improvement due to the precipitation of the salt contained in the reactant. In conclusion, supercritical water gasification of biomass can be considered as an promising alternative process for hydrogen production. The process should be improved by more performing equipments and by the control of the salinity content of the crude biomass
Eskandari, Azin. "A preliminary theoretical and experimental study of a photo-electrochemical cell for solar hydrogen production". Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC104.
Pełny tekst źródłaIn order to meet the energy and climate challenge of the coming 21st century, one solution consists of developing processes for producing storable energy carriers by artificial photosynthesis to synthesize solar fuels, in particular hydrogen, in order to valorize the solar resource. The understanding of these processes and the achievement of high kinetic and energetic performances require the development of generic, robust and predictive knowledge models considering radiative transfer as a physical process controlling the process at several scales but also including the various other phenomena involved in the structure or reification of the model.In this PhD work, the photo-reactive process at the heart of the study was the photo-electrochemical cell. More complex than the simple photoreactor, with a photo-anode and a (photo)cathode, the photo-electrochemical cell spatially dissociates the oxidation and reduction steps. Based both on the existing literature (mainly in the field of electrochemistry) and by deploying the tools developed by the research team on radiative transfer and thermokinetic coupling formulation, it was possible to establish performance indicators of photo-electrochemical cells.In parallel to the establishment of this model, an experimental approach was undertaken based first on a commercial Grätzel-type cell (DS-PEC) indicating the general trends of such photon energy converters with in particular a drop in energy efficiency as a function of the incident photon flux density. A modular experimental device (Minucell) has also been developed and validated in order to characterize photo-anodes of different compositions such as chromophore impregnated TiO2 electrodes for operation in Grätzel cells or Fe2O3 hematite electrodes (SC-PEC) where the semiconductor plays both the functions of photon absorption and charge carrier conduction. Above all, the Minucell device allowed to test, characterize and model the behavior of a bio-inspired photo-electrochemical cell for H2 production using at the photo-anode a Ru-RuCat molecular catalyst (developed by ICMMO Orsay/CEA Saclay) and at the cathode a CoTAA catalyst (developed by LCEMCA Brest). Minucell was used to characterize each constituent element of a photo-electrochemical cell and then the cell as a whole confirming the trends and observations obtained on energy efficiencies.This preliminary work opens up a wide range of research prospects, lays common ground between electrochemistry and photo-reactive systems engineering, and provides insights into the design and kinetic and energy optimization of photo-electrochemical cells for the production of hydrogen and solar fuels
Hagemann, Birger. "Numerical and Analytical Modeling of Gas Mixing and Bio-Reactive Transport during Underground Hydrogen Storage". Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0328/document.
Pełny tekst źródłaIn the context of energy revolution large quantities of storage capacity are required for the integration of strongly fluctuating energy production from wind and solar power plants. The conversion of electrical energy into chemical energy in the form of hydrogen is one of the technical possibilities. The technology of underground hydrogen storage (UHS), where hydrogen is stored in subsurface formations similar to the storage of natural gas, is currently in the exploratory focus of several European countries. Compared to the storage of natural gas in subsurface formations, which is established since many years, hydrogen shown some significant differences in its hydrodynamic and bio-chemical behavior. These aspects were investigated in the present thesis by different analytical and numerical approaches
Hajj, Viviane. "Transfert couplé électron/proton et coupure de liaisons dans les systèmes bio-inspirés : études mécanistiques par électrochimie de l'oxydation d'une paire guanine-cytosine et de la coupure réductrice de liaison oxygène-oxygène assistée en présence d'un groupe donneur de proton". Paris 7, 2011. https://tel.archives-ouvertes.fr/tel-00712330.
Pełny tekst źródłaThe electron transfer associated with proton transfer or bond breaking is an important process often presented in naturel and biological System. Understanding the mechanistic issues involved in the operation of these Systems allows us to understand, imitate and exploit them. Two bio-inspired Systems have been studied by direct electrochemistry, the oxidation of a guanine paired to a cytosine with hydrogen bonds and the reduction of a cycloperoxide assisted by the presence of a proton donnor group. The match between DMA bases through hydrogen bonding has no effect on the kinetic and thermodynamic of the oxidation of a guanine. The reaction is kinetically controlled by the first stage of electronic transfer and the mechanism involved is sequentiel. The reductive cleavage of the O-O bond of the cycloperoxide assisted by the presence of a proton donor group is compared to another System in which the carboxylic acid function is replaced by a methoxy group. An offset of 700 mV was observed between the pic potential of both compounds indicating that the gain offered by the protonation step is expressed in the kinetic of the reaction. Consequently the dissociative electron transfer and the proton transfer are al concerted. A new simplified kinetic model was established to describe the dynamics of such a mechanism called « all in concert »
Gentil, Solène. "Enzymes et catalyseurs bio-inspirés immobilisés sur électrodes nanostructurées pour l'élaboration de piles H2/air sans métaux nobles". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV058/document.
Pełny tekst źródłaNew energy technologies alternative to fossil fuels utilization is a key issue to mitigate greenhouse gases emission and develop a sustainable economy. In this context, platinum-based proton exchange membrane fuel cells use oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) to convert chemical energy into electrical energy. In nature multicopper oxidases and hydrogenases catalyze these two reactions, respectively. These enzymes and corresponding bioinspired catalysts have been used as alternatives to the rare and expensive platinum metal. First, a mononuclear bis-diphosphine nickel complex surrounded by arginine residues was immobilized onto carbon nanotubes (CNTs) and demonstrated excellent performances for HOR developing high current densities over a wide range of pH. This anode was integrated in a PEMFC, which achieved high power densities (15 mW cm-2), only five times lower as compared to classical PEMFC prepared under similar conditions. Regarding ORR catalysis, we covalently grafted LLaccases from Trametes sp C30 multicopper oxidases onto NTCs electrodes and achieved direct electron transfer. Using, bilirubin oxidase deposited on CNTs at the cathode side, we proposed a new concept of hybrid enzymatic/bio-inspired H2/air fuel cell. This hydrogen fuel cell delivered 1.8 mW.cm-2 and a high open circuit voltage of 1V. Finally, various copper complexes inspired from the active sites of copper enzymes were assessed for ORR and the first H2/air fuel cell containing noble metal-free molecular catalysts at both electrodes is reported, achieving 160 µW.cm-2 power density
Yu-Wu, Qian Michelle. "Étude de procédés de conversion de biomasse en eau supercritique pour l'obtention d'hydrogène. Application au glucose, glycérol et bio-glycérol". Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2012. http://tel.archives-ouvertes.fr/tel-00690467.
Pełny tekst źródłaLiu, Hong, i 劉紅. "Bio-hydrogen production from carbohydrate-containing wastewater". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31244518.
Pełny tekst źródłaMcAnoy, Andrew M. Sait Michelle Pantelidis Sue. "Establishment of a vaporous Hydrogen Peroxide bio-decontamination capability". Fishermans Bend, Victoria : Defence Science and Technology Organisation, 2007. http://hdl.handle.net/1947/8654.
Pełny tekst źródłaAppressi, Lorenzo. "Biogas and bio-hydrogen: production and uses. A review". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9071/.
Pełny tekst źródłaPierra, Mélanie. "Couplage de la fermentation sombre et de l’électrolyse microbienne pour la production d’hydrogène : formation et maintenance du biofilm électro-actif". Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20150/document.
Pełny tekst źródłaNowadays, alternative and sustainable solutions are proposed to avoid the use of fossil fuel. Hydrogen, which constitutes a promising energy vector, is essentially produced by fossil fuel reforming (95%). Environmentally friendly production systems have to be studied. Two main families of technologies are explored to produce hydrogen: 1) by thermochemical and electrochemical decomposition of water and 2) from different biomass sources. Among those last ones, microbial electrolysis cells (MEC) allow to produce hydrogen by electrolysis of organic matter. A MEC consists in a classical cathode, which provides hydrogen production by electrochemical reduction of water, associated to a bio-anode that oxidizes organic substrates into carbon dioxide. This process is only possible because of the anodic development of an electroactive microbial biofilm which constitutes an electrocatalyst. In comparison to classical water electrolysis process, a MEC requires 5 to 10 times less electrical energy and therefore reduces the energetic cost of produced hydrogen. Furthermore, classical process of dark fermentation in mixed cultures converts sugars (saccharose, glucose) to hydrogen with a limited yield of 2-3 moles of hydrogen per mole of hexose because of the coproduction of organic acids (mainly acetic and butyric acids). Fed with acetate, a MEC can produce up-to 3 moles of hydrogen per mole of acetate. Therefore, the association of these two processes could permit to produce 8 to 9 moles of hydrogen per mole of hexose, which represents a major step toward the theoretical limit of 12 moles of hydrogen per mole of hexose.Therefore, this work aims at analyzing the relationship between microbial community structures and compositions and the associated macroscopic functions (biofilm electroactive properties, hydrogen production potential) in electroactive biofilms and in dark fermentation in conditions allowing the coupling of the two processes. The originality of this study is to work in saline conditions (30-35 gNaCl/L), which favors the charges transfer in the MEC electrolyte.First of all, feasibility of dark fermentation in saline conditions (3-75 gNaCl/L) has been shown. This was linked to an inhibition of produced hydrogen consumption and the predominance of a new Vibrionaceae species at salt concentrations higher than 58 gNaCl/L. Secondly, electroactive biofilm growth in conditions compatibles to dark fermentation (pH 5.5-7 and fed with different organic acids) allowed to select dominant microbial species in anodic biofilms that present promising electroactive properties (Geoalkalibacter subterraneus and Desulfuromonas acetoxidans) with maximum current densities up to 8.5 A/m². In parallel, the microbial selection occurring during iron-reducing enrichment method used to select species from a natural inoculum source and based on their capacity to transfer electrons to iron oxydes (Fe(III)) has been studied. A decrease of electroactive performances of the biofilm linked to the divergence of microbial selection led to a limitation of the number of iron-enrichment steps. However, enrichment on Fe(III) presents an efficient alternative to pre-select electroactive species with an increase of coulombic efficiency from 30±4% to 99±8% in comparison with a biofilm obtained with a non-acclimated inoculum. Finally, the addition of exogenous bacteria from a dark fermenter on the electroactive biofilm revealed a decrease of electroactivity with a decrease of maximum current density produced. This diminution could be explained by a lower substrate transfer due to an apparent thickening of the biofilm. Nevertheless, the stability of microbial composition and of bacterial quantity on the anode suggests that a production of exopolymers (EPS) occurred
Ozkan, Leyla. "Dark Fermentative Bio-hydrogen Production From Sugar-beet Processing Wastes". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610980/index.pdf.
Pełny tekst źródłaAsous, Nadia K. "Hydrogen Atom Transfer Reactivity of Bio-inspired Unsymmetrical Dicopper– oxo/peroxo Complexes". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1533245264093817.
Pełny tekst źródłaPELLAVIO, GIORGIA. "Aquaporins permeability to hydrogen peroxide may control oxidative stress". Doctoral thesis, Università degli studi di Pavia, 2021. http://hdl.handle.net/11571/1448466.
Pełny tekst źródłaRedwood, Mark D. "Bio-hydrogen and biomass-supported palladium catalyst for energy production and waste-minimisation". Thesis, University of Birmingham, 2008. http://etheses.bham.ac.uk//id/eprint/3135/.
Pełny tekst źródłaRessouche, Emilie. "Nanostructuration de mélanges de polymères supra(macro)moléculaires". Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066758.
Pełny tekst źródłaSupramolecular polymers are polymers constituted or linked by non-covalent interactions. They can be classical polymers linked by stickers, named here “supramacromolecular polymers”, or self-assembled low molecular weight molecules, leading to a “supramolecular polymer”. In solution, supramolecular polymers, depending on their shape, can entangle and form thermoreversible gels. In bulk, unlike classical polymers, supramacromolecular polymers are dynamic, thus they can exhibit interesting properties (self-repair, adhesion, stimuli-responsive self-organized nanostructures). The aim of this thesis is to study bis-urea-based supra(macro)molecular polymer mixtures, in solution or in bulk. In solution, synergies are characterized, at microscopic (microstructure) and macroscopic scale (rheology). In bulk, low molecular weight molecules are mixed with supramacromolecular polymers on one hand, and supramacromolecular polymers blends are created on the other hand. The materials are studied both at microscopic (microstructure) and macroscopic scale (rheology, mechanical properties)
Gambari, Laura <1985>. "Hydrogen Sulfide (H2S) Based Therapeutics for Bone Diseases: Translating Physiology to Treatments". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7535/1/gambari_laura_tesi.pdf.
Pełny tekst źródłaGambari, Laura <1985>. "Hydrogen Sulfide (H2S) Based Therapeutics for Bone Diseases: Translating Physiology to Treatments". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7535/.
Pełny tekst źródłaLuo, Xiang. "Hydrogen production from catalytic steam reforming of bio-oil over nano NixMgyO solid solution". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/37439/.
Pełny tekst źródłaWang, Meng. "Steam reforming of model compounds of bio-oil with and without CO₂ sorbent". HKBU Institutional Repository, 2014. https://repository.hkbu.edu.hk/etd_oa/212.
Pełny tekst źródłaWollbrink, Alexander [Verfasser]. "Hydrogen-selective porous carbon-based membranes for catalytic steam reforming of bio-ethanol / Alexander Wollbrink". Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2021. http://d-nb.info/123055064X/34.
Pełny tekst źródłaAyad, Massinissa. "Réactivité biomimétique du dioxygène au sein de complexes du fer et du cuivre en vue de l’activation des liaisons C-H". Thesis, Brest, 2017. http://www.theses.fr/2017BRES0054.
Pełny tekst źródłaCatalytic oxydation of C-H bonds using molecular oxygen as ‘green’ oxidant remains a great challenge from both fundamental and industrial point of views. Many metalloproteins, such as copper end iron-based mono-oxygenases are able to perform these reactions under mild conditions. A current strategy is to develop synthetic complexes which can reproduce the efficiency of such enzymes. The main objective of our work has been to synthesize and characterize new models of soluble (sMMO) and particulate (pMMO) mono-oxygenases. Two approaches have been developed. The first strategy was to synthesize unsymmetrical dinucleating ligands bearing two coordination sites, tris-(2-pyridylmethyl)amine “TPA” and pyridinedicarboxamide “PydCA”, which are embedded in a single macrocycle to favor intermetallic interaction. The second strategy is based on the synthesis of dinucleating ligands where coordinating patterns, tetraazacyclotetradecane “cyclam” and dipicolylamine “DPA”, are separated by a phenyl type spacer. These two approaches have led to the formation and characterization in the solid state (X-ray structure) and in solution (spectroscopy, electrochemistry) of many mononuclear and dinuclear iron, copper and cobalt complexes. The study of the reactivity of some mononuclear complexes towards oxidants such as O2 and H2O2, in absence of organic substrates, has led to the identification of metal-oxygen species. Catalytic oxidation of organic substrates was also conducted
Nogueira, Francisco Guilherme Esteves. "Catalisadores de Ni promovidos com Mg e Nb para reforma a vapor do ácido acético como molécula modelo do bio-óleo". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-02022015-155946/.
Pełny tekst źródłaThe development of technologies for generating hydrogen in Brazil has become an important factor because it is a source of clean fuel which can be obtained from different renewable raw materials. Among these technologies, the steam reforming of bio-oil from the pyrolysis of biomass can be highlighted. The bio-oil is a complex mixture of different oxygenated organic compounds such as aldehydes, carboxylic acids, ketones, carbohydrates and alcohols with acetic acid being one of the major compounds (∼12-15%), which may be used as a model molecule of bio-oil steam reforming reactions. However, the steam reforming of acetic acid presents some difficulties, such as coke formation on the surface of the catalysts, which may result in its deactivation. Thus, this work aimed to develop catalysts based on nickel (Ni) promoted with magnesium (Mg) and niobia (Nb) supported on alumina (γ-Al2O3), for application in steam reforming of acetic acid in order to minimize the formation of carbonaceous residues, as well as increase the activity and selectivity for hydrogen. For this purpose, initially three catalysts were synthesized with different Ni content, (10, 15 and 20%), and the catalyst with 15% Ni mass showed the best activity and selectivity for the steam reforming of acid acetic acid. From the best Ni loading, was added four different concentrations of Mg and Nb, 1%; 2.5%; 5% and 10% by weight. Among the catalysts promoted with Mg, the catalyst with 5% Mg (15% Ni5% Mg/Al) at a temperature of 600 °C, showed a 96% conversion of acetic acid, with selectivity to hydrogen of around 65 %. In addition, this catalyst showed lower rate of coke formation and lower Ni particle size compared to the non-promoted catalyst (15% Ni/Al), showing that the addition of Mg can prevent sintering of Ni particles. Among the catalysts promoted with Nb, the catalyst 15% Ni 2, 5% Nb/Al showed higher selectivity to hydrogen (∼73%) at 600 °C compared to the others. Despite having a larger particle size, the addition of Nb increased the capacity of decomposition of methane from of the decomposition reaction and methanation of acetic acid favoring the production of hydrogen and promoted the formation of nanostructures. Thus, the addition of catalytic promoters can contribute to the increase in hydrogen production, either by a reduction in carbonaceous deposits or the modification of structures formed on the surface of the materials.
Coutard, Nathan. "Optimisation et intégration d'anodes bio-inspirées dans une pile à combustible sans platine". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV021/document.
Pełny tekst źródłaThe use of new energy vectors as alternatives to the fossil and nuclear fuels is necessary for the transition to renewable energies. These intermittent energy sources can be stored in fuels, such as hydrogen gas which stands out for its energy density and participation in the virtuous water splitting cycle. Controlled H2 oxidation can be done in so-called fuel cells, which oxidize hydrogen at the anode and reduce oxygen at the cathode to form water and heat as the sole products of the reaction. Those mature technologies employ platinum group metals as catalysts at both the anode and cathode. However, as worldwide energy demands keep increasing, these limited resources will not be sufficient for a worldwide adoption of H2 as an energy vector. In this work, materials containing noble metal free, bio inspired catalysts for H2 oxidation are optimized and integrated in functional fuel cells. Their behaviour in technologically-relevant conditions is studied and compared to that of state of the art platinum catalysts. The best performing materials are thoroughly characterized with various techniques including advanced electrochemistry, yielding leads for further optimization as well as insight on the benchmarking of novel catalytic materials
Hernandez-Gonzalez, Sergio Manuel. "Non-Catalytic Production of Hydrogen via Reforming of Diesel, Hexadecane and Bio-Diesel for Nitrogen Oxides Remediation". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1228317376.
Pełny tekst źródłaSeelam, P. K. (Prem Kumar). "Hydrogen production by steam reforming of bio-alcohols:the use of conventional and membrane-assisted catalytic reactors". Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526202778.
Pełny tekst źródłaTiivistelmä Maailman energiankulutus on kasvussa räjähdysmäisen väestönkasvun ja voimakkaan kaupungistumisen myötä. Tällä hetkellä energian tuottamisen aiheuttamat ympäristöongelmat ja taloudellinen epävarmuus ovat seikkoja, joiden ratkaisemiseksi tarvitaan vaihtoehtoisia ja ei-perinteisiä energialähteitä, joilla on korkea energiasisältö ja jotka tuottavat vähän hiilidioksidipäästöjä. Eräs vaihtoehtoisista lähestymistavoista on vetytalous yhdistettynä polttokennotekniikkaan, minkä on esitetty helpottavan siirtymistä kestävään yhteiskuntaan. Vety on puhdas ja hiilivapaa polttoaine ja energian kantaja. Lisäksi vetyä käytetään monissa prosesseissa kemian-, elintarvike-, metalli- ja lääketeollisuudessa ja se on arvokas kemikaali monissa prosesseissa (mm. öljynjalostamoissa). Uusiutumattomat luonnonvarat ovat olleet tähän saakka merkittävin vedyn tuotannon raaka-aine. Tällä hetkellä noin 50 % vedystä tuotetaan maakaasun katalyyttisellä höyryreformoinilla. Puhtaan (yli 99,99 %) vedyn tuotanto vaatii kuitenkin useita puhdistusvaiheita, jotka ovat erittäin energiaintensiivisiä. Integroimalla reaktio- ja puhdistusvaihe samaan yksikköön (membraanireaktori) saavutetaan huomattavia kustannussäästöjä. Biopolttoaineet, kuten biomassapohjaiset alkoholit (bioetanoli ja bioglyseroli), ovat vaihtoehtoisia lähtöaineita vedyn valmistuksessa. Tämän työn tavoitteena on tuottaa vetyä bioalkoholeista tehokkaasti (korkea selektiivisyys ja saanto) ja ympäristöystävällisesti. Tutkimus on jaettu kahteen osaan, joista ensimmäisessä tutkittiin etanolin katalyyttistä höyryreformointia matalissa lämpötiloissa (<450 °C) hyödyntämällä metallipinnoitettuja hiilinanoputkia. Työn toisessa osassa höyryreformointia ja vesikaasun siirtoreaktioa tutkittiin membraanireaktorissa käyttämällä vedyn tuotantoon tiheitä palladiumpohjaisia kalvoja sekä huokoisia palladiumkomposiittikalvoja. Hiilinanoputket (CNT) havaittiin lupaaviksi katalyyttien tukimateriaaleiksi verrattuna tavanomaisesti valmistettuihin tukiaineisiin, kuten Al2O3. CNT-tukiaineelle pinnoitetuilla aktiivisilla aineilla (metalli-/metallioksidit) todettiin olevan pieni partikkelikoko (~2–5 nm) ja kapea partikkelikokojakauma. Sinkkioksidin (ZnO) lisäyksellä Ni/CNT-katalyytteihin saavutettiin korkea vetyselektiivisyys (~76 %) ja erittäin alhainen hiilimoksidiselektiivisyys (<1 %). Etanolin todettiin olevan parempi vedyn raaka-aine kuin glyserolin. Tiheillä Pd-Ag-kalvoilla havaittiin olevan vedyn suhteen korkeampi selektiivisyys mutta matalampi vuo verrattuna palladiumkomposiittikalvoihin. Membraanireaktorin suorituskyky oli riippuvainen myös katalyytin aktiivisuudesta, joten sekä kalvolla että katalyyttimateriaalilla oli merkittävä rooli kyseisessä reaktorirakenteessa. Yhteenvetona voidaan todeta, että membraanierotukseen perustuva reformointiyksikkö on huomattavasti perinteistä reformeriyksikköä suorituskykyisempi mahdollistaen tehokkaan teknologian puhtaan vedyn tuottamiseksi. Membraanitekniikalla tuotettua puhdasta vetyä voidaan hyödyntää mm. polttokennojen polttoaineena
Caumes, Xavier. "Hydrogen-bonded supramolecular polymers as dynamic scaffolds for catalysis". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066554/document.
Pełny tekst źródłaHydrogen-bonded supramolecular polymers based on benzene-1,3,5-tricarboxamide (BTA) and bis-urea recognition units were investigated as dynamic scaffolds for catalysis. The catalytic properties of a full set of ligands, including a series of eleven new bis-urea ligands, and complementary co-monomers have been investigated in various metal-catalyzed reactions. Co-polymers formed by mixing an achiral phosphine-functionalized monomer (the ligand) and a chiral phosphine-free additive (the co-monomer) were investigated as scaffolds for asymmetric catalysis. The aim was to transfer, amplify and switch the supramolecular chirality of the polymer scaffold to intrinsically achiral metal centres located at its periphery. BTA mixtures have been successfully applied in two different asymmetric reactions providing up to 85% and 80% e.e. in the rhodium-catalysed hydrogenation of dimethylitaconate and in the copper-catalysed hydrosilylation of 4’-nitro-acetophenone respectively. The BTA scaffold supporting the catalytic rhodium and copper centres display strong chirality amplification properties: i) for the rhodium catalysis, the amount of chiral co-monomer can be decreased down to one-fourth of that of the ligand without deteriorating the enantioselectivity of the reaction and ii) the chirality of the copper catalyst can be switched during the course of the catalytic reaction. In the case of the bis-urea platform, mixtures of monomers have been investigated in several asymmetric metal-catalysed reactions but selectivity was obtained only for the copper-catalyzed hydrosilylation of 4’-nitro-acetophenone (22% e.e). We also tested the use of supramolecular polymers in the context of organocatalysis: the possibility of tuning the activity of a thiourea catalytic centre by controlling its self-assembly behaviour was investigated. Overall, our studies clearly reveal the innovative properties of catalysts supported by hydrogen-bonded supramolecular polymers
Zhang, Keren. "Bio-inspired Design and Self-Assembly of Nucleobase- and Ion-Containing Polymers". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73986.
Pełny tekst źródłaPh. D.
Cyranka, Beatriz. "Otimização do processo de descontaminação no sistema isolador de Bio-Manguinhos". Instituto de Tecnologia em Imunobiológicos, 2011. https://www.arca.fiocruz.br/handle/icict/5910.
Pełny tekst źródłaMade available in DSpace on 2012-11-30T12:31:09Z (GMT). No. of bitstreams: 1 beatriz-cyranka.pdf: 1720638 bytes, checksum: c436adb348584d5a5a8213fccdef6ea6 (MD5) Previous issue date: 2011
Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.
Novas tecnologias, como o sistema isolador para ensaios de esterilidade vieram a contribuir com a incorporação de um melhor desempenho destes ensaios no controle de qualidade das indústrias farmacêuticas.Este trabalho teve como objetivo a verificação do processo de biodescontaminação dentro do sistema isolador de Bio-Manguinhos, utilizado como agente esterilizante o gás de peróxido de hidrogênio. Foram utilizadas como biocarga para redução de contaminação microbiológica três concentrações dos microrganismos, Candida albicansATCC 10231, Clostridium sporogenesATCC 11437 eMicrococcus luteusATCC 9341, impregnadas em discos de filtro de celulose. Os estudos de cinética de crescimento dos microrganismos foram realizados para um melhor entendimento do seumetabolismo, bem como aspectos gerais de crescimento que contribuíram para ressaltar que a Candida albicans inicia sua fase exponencial de crescimento na segunda hora do cultivo e finaliza esta etapa na sexta hora do cultivo, com produção máxima de células viáveis, fato observado também no microrganismo Micrococccus luteus. Para o cultivo doClostridium sporogenes o crescimento foi mais lento com uma curva de crescimento com 60 horas de cultivo total. A produção de maior número de células para o Clostridiumfoi alcançada na vigésima quarta hora de cultivo, assim como a maior produção de esporos. Foi estabelecida, ao longo da curva de crescimento, a relação entre densidade ótica e número de células viáveis, relação essa importante para o estabelecimento das condições do estudo em relação à biocarga empregada de cada microrganismo no momento do desafio no sistema isolador. A capacidade de descontaminação avaliada dentro do sistema isolador com o biocida peróxido de hidrogênio revelou o tempo de exposição ao gás de 10 minutos, como resultado final satisfatório apresentando redução total da carga microbiana com destruição total das células viáveis, assim como as formas esporuladas do Clostridium sporogenes. Desta forma conclui-se que o peróxido de hidrogênioé um biocida de eficácia comprovada, nas variáveis deste estudo e o processode descontaminação no sistema isolador de Bio-Manguinhos é compatível comsua atividade finalística na produção de insumos para a saúde.
New technologies such as isolator system for sterility tests came to help with the incorporation of a better performance of these kinds of tests in quality control of pharmaceutical companies. This study aimed to verify the decontamination process within the system isolator of Bio-Manguinhos, usinghydrogen peroxide gas as a sterilizing agent. Three concentrations of microorganisms were used as bioburden for the microbiological contamination reduction, Candida albicansATCC 10231, Clostridium sporogenesATCC 11437 and Micrococcus luteusATCC 9341, impregnated in cellulose filter discs. Studies of growth kinetics of microorganisms were carried out to a better understanding of theirmetabolism, as well as general aspects of growth that contributed to emphasize that the Candida albicansbegins its exponential growth phase in the second hour of cultivation and this step ends at the sixth hour cultivation, with maximum yield of viable cells, this was also observed in the Micrococcus luteusmicroorganism. For the Clostridium sporogenescultivation, growth was slower with a 60 hours growth curve of total culture. The production of more cells for Clostridiumwas achieved in the twenty-fourth hour of cultivation, as well as the maximum spores production. It was established along the growth curve the relationship between optical density and numberof viable cells, this relationship was important to establish the conditions of the study related to the bioburden of each microorganism used to challenge the isolator system. The decontamination capacity evaluated within the isolator system with the hydrogen peroxide biocide showed that the gas exposure time of 10 minutes wassatisfactory demonstrating total reduction of the microbial load with total destruction of viable cells, as well as the sporulated forms of Clostridium sporogenes. Thus it is concluded that hydrogen peroxide is a proved effective biocide, in the variables of this study and decontamination process in the Bio-Manguinhos insulator system is compatible with its main activity in the production of health supplies.
Chongcharoentaweesuk, Pasika. "Hydrogen production by Rhodobacter sphaeroides and its analysis by metabolic flux balancing". Thesis, University of Manchester, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603211.
Pełny tekst źródłaWang, Shengdong. "Transition metal-catalyzed reduction reactions adding value to bio-sourced compounds". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S134.
Pełny tekst źródłaThis research work deals with the use of catalysts based on transition metals, such as ruthenium, iridium, cobalt, silver for transformations of renewable bio-based substrates to valuable products for applications in chemical industry and energy. The transfer hydrogenation of levulinic acid to γ-valerolactone with novel ruthenium- and iridium(dipyridylamine)chloride complexes using formic acid as hydrogen source was first developed. Then, novel zwitterionic ruthenium and iridium(sulfato)(dipyridylamine) catalysts were prepared, which displayed the highest turnover numbers reported for the reduction of levulinic acid into γ valerolactone using H₂ as hydrogen source. Based on the high catalytic performance of the iridium(sulfato)complexes in reduction processes, the efficient reductive amination of levulinic acid and o formylbenzoic acid, in particular with bulky primary amines, for the synthesis of pyrrolidone derivatives was disclosed. The selective dehydrogenation of formic acid under mild conditions in aqueous media or neat conditions without using an organic additive has been developed using iridium catalysts of the same family equipped with a modified dimethylaminodipyridylamineas ligand. Finally, an unprecedented hydrogenation of ketones in the presence of in situ generated silvernanoparticleswas discovered. High efficacy and functional group selectivity have been achieved in most cases
MANFREDI, NORBERTO. "Synthesis and investigations of multifunctional organic molecules and materials for applications in the field of renewable energy". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/153280.
Pełny tekst źródłaIn this PhD project, we studied molecules and new materials for application in third generation solar cells and photocatalytic or photoelectrochemical production of H2. The first part of this work was focused on the study of DSSCs devices going to investigate new organic-based photosensitizers, some of them obtained from external collaborations, and several phenothiazine based dyes bearing different functionalization to modulate optical and photovoltaic properties either in presence of organic and water based electrolyte. Perovskite solar cells (PSC) have also been studied and a reliable fabrication procedure have been developed. A study of feasibility about integration in multi-junction devices with mc-Si have been done successfully. Several hydrazone-based hole transport materials have been synthesized and their optical and electrochemical properties have been investigated. The mobility of carriers of these new materials have been studied in organic field effect transistor and they have been employed in PSC devices. Dibranched phenothiazine based dyes, were tested as photosensitizers in the photocatalytic production of H2, in combination with a Pt/TiO2 catalyst. The optical and electrochemical properties of the dyes were investigated, showing that careful design of the new dyes afforded enhanced optical properties. In the H2 production over 20 h, the new sensitizers revealed improved stability after longer irradiation times and enhanced performances, in terms of H2 production rates and light-to-fuel efficiencies, which were for the first time associated with enhanced stability under photocatalytic production of H2 and the absence of critical dye degradation. Analogous phenothiazine dye has been functionalized with a peripheral glucose unit (PTZ-GLU) to bust its affinity to water and enhance dye-sensitized photogeneration of H2. Compared to the corresponding alkyl derivative, as well as the common hydrophilic triethylene glycol substitution (PTZ-TEG); PTZ-GLU performed twice more efficient than PTZ-TEG in the photogeneration of H2 in terms of evolved gas and turnover number. PTZ-GLU has been investigated in presence of properly designed glucose-based co-adsorbents (GLU) to promote beneficial directional interactions on the semiconductor catalytic surface and, access enhanced catalytic activity. We have demonstrated that the combined use of the glucose-based dye and co-adsorbent afforded enhanced photocatalytic H2. A series of carbazole-based dyes have been synthesized and used as photosensitizers in the photocatalytic H2 generation. Compared to the more commonly used PTZ dyes, the exploitation of the planar and sulfur-free carbazole scaffold allows a ligand-to-metal charge transfer (LMCT) visible light absorption, busting the H2 production. A preliminary study on p-type dyes for H2 production by photoelectrochemistry has begun with interesting results.
Chen, Keke. "Roll-to-Roll Manufacturing and Real-Time Characterization of Bio-Functional Polymers". University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1548177736839976.
Pełny tekst źródłaTamami, Mana. "Synthesis and characterization of ammonium ionenes containing hydrogen bonding functionalities". Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/19234.
Pełny tekst źródłaHydrogen bonding interaction (10-40 kJ/mol) was introduced using DNA nucleobase pairs such as adenine and thymine. Novel adenine and thymine functionalized segmented and non-segmented ammonium ionenes were successfully synthesized using Michael addition chemistry. In non-segmented systems, we investigated the influence of spacer length on homoassociation and heteroassociation of complementary nucleobase-containing ionenes. Based on DSC analyses, complementary non-segmented ionenes made miscible blends. The Tgs of ionene blends with shorter spacer length (4 bonds between the nucleobase and secondary amine in the polymer backbone) followed the Fox equation, which indicated no intermolecular interactions. The longer alkyl spacer (9 bonds between nucleobase and secondary amine in the polymer backbone) provided efficient flexibility for the self-assembly process to occur. Thus, increasing the spacer length from 4-bonds to 9-bonds, the Tgs of the blends deviated from both Fox and Gordon-Taylor equations and demonstrated the presence of hydrogen bonding interactions.
In segmented systems, we investigated the association between nucleobase-containing ionenes and their complementary guest molecules. Job\'s method revealed a 1:1 stoichiometry for the hydrogen-bonded complexes. These association constants for the 1:1 complexes, based on the Benesi-Hildebrand model were 94 and 130 M-1 respectively, which were in agreement with literature values for adenine and thymine nucleobase pairs (10-100 M-1). DSC thermograms confirmed no macrophase separation for 1:1 [ionene-A/T]:[guest molecule] complexes based on the disappearance of the melting peak of the guest molecule. Morphological studies including atomic force microscopy (AFM) demonstrated a reduced degree of microphase separation for the 1:1 complexes due to the disruption of adenine-adenine or thymine-thymine interactions.
Poly(dimethyl siloxane)-based ammonium ionenes having various hard segment contents were synthesized. The charge density or hard segment content was tuned for appropriate application using low molecular weight monomer. The change in hard segment content had a profound effect on thermal, mechanical, rheological, and gas permeability. Microphase separation was confirmed using DSC and DMA in these systems. DMA showed that the rubbery plateau modulus extended to higher temperatures with increasing hard segment content. Tensile analysis demonstrated systematic increase in modulus of PDMS-ionenes with increasing hard segment content. Oxygen transmission rates decreased linearly as the wt% hard segment increased.
Ph. D.
Caumes, Xavier. "Hydrogen-bonded supramolecular polymers as dynamic scaffolds for catalysis". Electronic Thesis or Diss., Paris 6, 2016. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2016PA066554.pdf.
Pełny tekst źródłaHydrogen-bonded supramolecular polymers based on benzene-1,3,5-tricarboxamide (BTA) and bis-urea recognition units were investigated as dynamic scaffolds for catalysis. The catalytic properties of a full set of ligands, including a series of eleven new bis-urea ligands, and complementary co-monomers have been investigated in various metal-catalyzed reactions. Co-polymers formed by mixing an achiral phosphine-functionalized monomer (the ligand) and a chiral phosphine-free additive (the co-monomer) were investigated as scaffolds for asymmetric catalysis. The aim was to transfer, amplify and switch the supramolecular chirality of the polymer scaffold to intrinsically achiral metal centres located at its periphery. BTA mixtures have been successfully applied in two different asymmetric reactions providing up to 85% and 80% e.e. in the rhodium-catalysed hydrogenation of dimethylitaconate and in the copper-catalysed hydrosilylation of 4’-nitro-acetophenone respectively. The BTA scaffold supporting the catalytic rhodium and copper centres display strong chirality amplification properties: i) for the rhodium catalysis, the amount of chiral co-monomer can be decreased down to one-fourth of that of the ligand without deteriorating the enantioselectivity of the reaction and ii) the chirality of the copper catalyst can be switched during the course of the catalytic reaction. In the case of the bis-urea platform, mixtures of monomers have been investigated in several asymmetric metal-catalysed reactions but selectivity was obtained only for the copper-catalyzed hydrosilylation of 4’-nitro-acetophenone (22% e.e). We also tested the use of supramolecular polymers in the context of organocatalysis: the possibility of tuning the activity of a thiourea catalytic centre by controlling its self-assembly behaviour was investigated. Overall, our studies clearly reveal the innovative properties of catalysts supported by hydrogen-bonded supramolecular polymers
Vall-llosera, Gemma. "Synchrotron radiation studies of gas phase molecules : from hydrogen to DNA sugars". Doctoral thesis, KTH, Atom- och molekylfysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4640.
Pełny tekst źródłaQC 20100916
Assfour, Bassem. "Hydrogen Storage In Nanostructured Materials". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65858.
Pełny tekst źródłaMoreira, Renata. "Estudo da pirólise lenta da casca da castanha de caju". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-07102015-090727/.
Pełny tekst źródłaCashew nut shell (CNS), an agricultural waste of cashew nut production, from northeast region of Brazil was characterized and slow pyrolyzed. The properties of char, bio-oil and gases products were investigated and potential applications were proposed. CNS was characterized by the following analyses: CHNS, total moisture, ash content, volatile matter, high heating value and thermogravimetric analysis. The thermogravimetric analysis under nitrogen flow showed that the decomposition is dominated by the degradation of hemicellulose and cellulose in the range from 250 to 350oC and the decomposition of lignin in the range of 400 to 500oC. In the presence of air, the degradation profile is similar; however the decomposition of lignin increases. Slow pyrolysis of cashew nut shell was carried out in batch-type reactor heated by a combustion flame (air + GLP) under different nitrogen and air flow rates. The resulting solid (char), liquid (water + bio-oil) and gas phases were characterized and quantified. The experiments performed under nitrogen showed a yield of solid, liquid and gas phases of about 30, 40 and 30wt%, respectively. Under air the yield of liquid phase was reduced, primarily the bio-oil yield; production of the gas phase was, in turn, increased. The produced biochars had high carbon contents in the range of 70-80 wt%, high heating values in the range of 25-28 MJ Kg-1 and characteristics of amorphous carbons without defined morphology and the absence of pores. The FTIR spectra of bio-oils produced under nitrogen flow showed an increase of the relative intensity of the bands around 1700 cm-1 (ν C = O) and 1230 cm-1 (ν C-O) in comparison with those produced under air flow which suggests the presence of large amounts of oxygenated carbon compounds such as aldehydes, ketones and carboxylic acids. The analysis of gas phases showed the predominance of CO2 and CO at temperatures lower than 400oC and the preferential formation of H2 above this temperature.
Almatouq, Abdullah. "Study of the parameters for optimisation of the design and performance of bio-electrochemical systems for energy/hydrogen generation and resource recovery". Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/100405/.
Pełny tekst źródłaDuregotti, Elisa. "Neuronal hydrogen peroxide promotes nerve terminals regeneration at neuromuscular junction". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424296.
Pełny tekst źródłaLa giunzione neuromuscolare (GNM) costituisce il sito di trasmissione di un impulso elettrico dal terminale del motoneurone alla fibra muscolare; l’organizzazione strutturale di questo sistema altamente dinamico è stata ulteriormente complicata dall’aggiunta delle cellule di Schwann perisinaptiche (CSPs), dando origine al concetto di sistema tripartito. Le CSPs sono cellule di Schwann non mielinizzanti strettamente adese alla zona di contatto tra nervo e muscolo; esse partecipano attivamente a molte funzioni fisiologiche della GNM, come il suo sviluppo embrionale ma anche il corretto mantenimento di GNMs adulte. Esse sono inoltre in grado di percepire e modulare l’attività sinaptica, mediante l’attivazione di recettori muscarinici e purinergici presenti sulla loro superficie. Studi più recenti hanno dimostrato che le CSPs sono coinvolte nei processi di recupero che hanno luogo in risposta ad un danno nervoso; in seguito a denervazione o a ridotta attività sinaptica, le CSPs de-differenziano, diventando CSPs “reattive”, ed iniziano a proliferare. Queste CSPs reattive partecipano attivamente ai processi di degenerazione e rigenerazione nervosa: esse subiscono variazioni nella loro espressione genica e acquisiscono attività simil-macrofagiche, contribuendo alla rimozione dei detriti neuronali e reclutando fagociti in seguito al rilascio di citochine e chemochine. Inoltre, in seguito alla degenerazione dei terminali nervosi, le CSPs presenti alle placche motrici denervate estendono lunghi processi citosolici in grado di indurre e guidare la ricrescita neuronale. Considerando la crescente incidenza di malattie neurodegenerative che inizialmente interessano in maniera selettiva i terminali dei motoneuroni – quali la SLA e le neuropatie autoimmuni -, sarebbe senz’altro utile caratterizzare in maniera più approfondita il crosstalk tra terminali nervosi in degenerazione e le adiacenti CSPs. In particolare, l’identificazione di mediatori molecolari coinvolti nell’attivazione delle CSPs e nel processo di rigenerazione nervosa potrebbe rivelarsi cruciale per lo sviluppo di nuovi approcci terapeutici. A tale scopo, abbiamo adottato un approccio sperimentale innovativo, alternativo al cut/crush del nervo sciatico tradizionalmente utilizzato fino ad oggi. Al fine di effettuare un danno localizzato ai soli terminali nervosi, evitando il coinvolgimento di molti tipi cellulari e mediatori dell’infiammazione come accade nel corso della degenerazione Walleriana, abbiamo deciso di sfruttare il meccanismo d’azione di due classi di neurotossine presinaptiche animali: α-Latrotoxin, una tossina formante poro presente nel veleno dei ragni del genere Latrodectus, ed alcune neurotossine di serpente dotate di attività fosfolipasica, denominate SPANs. Entrambi i tipi di neurotossine inducono un’acuta e altamente riproducibile degenerazione dei terminali nervosi dei motoneuroni, seguita entro pochi giorni da una rigenerazione completa: l’azione di tali neurotossine rappresenta quindi un sistema appropriato e controllato per esaminare i meccanismi molecolari alla base della degenerazione e rigenerazione nervosa, come anche il contributo delle CSPs a tali processi. Abbiamo precedentemente dimostrato che i terminali nervosi esposti ad α-Ltx e SPANs deegenerano a causa di un eccessivo influsso di calcio nel citosol, che a sua volta induce un danno mitocondriale. In questo lavoro, abbiamo dimostrato che neuroni primari intossicati aumentano la produzione di H2O2 a livello mitocondriale: il perossido di idrogeno è una molecola stabile e diffusibile attraverso membrane lipidiche, e potrebbe perciò agire come segnale paracrino su cellule adiacenti. Infatti, l’esposizione di cellule di Schwann (CSs) primarie in coltura a basse concentrazioni di H2O2 induce la fosforilazione di ERK, con la conseguente attivazione di pathways a valle. È stato recentemente dimostrato che la via di ERK gioca un ruolo fondamentale nel controllo della plasticità delle CSs durante la rigenerazione nervosa in vivo, ma fino ad oggi i mediatori molecolari responsabili per l’attivazione di tale pathway non sono ancora stati identificati: il perossido di idrogeno prodotto dai neuroni in degenerazione costituisce un buon candidato per tale ruolo. In supporto a tale ipotesi, abbiamo osservato che il livello di fosforilazione di ERK è ridotto in co-colture di neuroni e CSs intossicate e pre-incubate con catalasi, che converte rapidamente il perossido di idrogeno in ossigeno ed acqua: ciò conferma che il perossido di idrogeno prodotto dai neuroni diffonde effettivamente nel mezzo extracellulare fino a raggiungere le vicine CSs, nelle quali induce l’attivazione della via di ERK. Tale attivazione è riscontrata anche nelle CSPs alle GNMs intossicate in vivo. Per confermare il coinvolgimento del perossido di idrogeno nell’induzione della rigenerazione nervosa, abbiamo effettuato registrazioni elettrofisiologiche ed esperimenti di immunoistochimica, ed entrambi gli approcci sperimentali hanno dimostrato che in la somministrazione di catalasi in vivo ritarda il processo di rigenerazione nervosa in muscoli intossicati. Inoltre, il pre-trattamento con un inibitore della via di ERK - PD98059 – rallenta la il recupero dall’intossicazione con una cinetica molto simile a quella osservata in presenza di catalasi, supportando l’idea che in effetti il perossido di idrogeno promuova la rigenerazione nervosa attraverso l’attivazione della via di ERK nelle CSPs
Song, Hua. "Investigation of Reaction Networks and Active Sites in Bio-ethanol Steam Reforming over Cobalt based Catalysts". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243999804.
Pełny tekst źródłaReichle, Rainer. "Exotic Species of Hydrogen". [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10236320.
Pełny tekst źródłaBraden, Drew J. "Fuel cell grade hydrogen production from the steam reforming of bio-ethanol over co-based catalysts an investigation of reaction networks and active sites /". Connect to this title online, 2005. http://hdl.handle.net/1811/301.
Pełny tekst źródłaTitle from first page of PDF file. Document formattted into pages: contains [55] p.; also includes graphics. Includes bibliographical references. Available online via Ohio State University's Knowledge Bank.