Gotowa bibliografia na temat „Binary neural networks (BNN)”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Binary neural networks (BNN)”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Binary neural networks (BNN)"

1

Rozen, Tal, Moshe Kimhi, Brian Chmiel, Avi Mendelson, and Chaim Baskin. "Bimodal-Distributed Binarized Neural Networks." Mathematics 10, no. 21 (2022): 4107. http://dx.doi.org/10.3390/math10214107.

Pełny tekst źródła
Streszczenie:
Binary neural networks (BNNs) are an extremely promising method for reducing deep neural networks’ complexity and power consumption significantly. Binarization techniques, however, suffer from ineligible performance degradation compared to their full-precision counterparts. Prior work mainly focused on strategies for sign function approximation during the forward and backward phases to reduce the quantization error during the binarization process. In this work, we propose a bimodal-distributed binarization method (BD-BNN). The newly proposed technique aims to impose a bimodal distribution of the network weights by kurtosis regularization. The proposed method consists of a teacher–trainer training scheme termed weight distribution mimicking (WDM), which efficiently imitates the full-precision network weight distribution to their binary counterpart. Preserving this distribution during binarization-aware training creates robust and informative binary feature maps and thus it can significantly reduce the generalization error of the BNN. Extensive evaluations on CIFAR-10 and ImageNet demonstrate that our newly proposed BD-BNN outperforms current state-of-the-art schemes.
Style APA, Harvard, Vancouver, ISO itp.
2

Cho, Jaechan, Yongchul Jung, Seongjoo Lee, and Yunho Jung. "Reconfigurable Binary Neural Network Accelerator with Adaptive Parallelism Scheme." Electronics 10, no. 3 (2021): 230. http://dx.doi.org/10.3390/electronics10030230.

Pełny tekst źródła
Streszczenie:
Binary neural networks (BNNs) have attracted significant interest for the implementation of deep neural networks (DNNs) on resource-constrained edge devices, and various BNN accelerator architectures have been proposed to achieve higher efficiency. BNN accelerators can be divided into two categories: streaming and layer accelerators. Although streaming accelerators designed for a specific BNN network topology provide high throughput, they are infeasible for various sensor applications in edge AI because of their complexity and inflexibility. In contrast, layer accelerators with reasonable resources can support various network topologies, but they operate with the same parallelism for all the layers of the BNN, which degrades throughput performance at certain layers. To overcome this problem, we propose a BNN accelerator with adaptive parallelism that offers high throughput performance in all layers. The proposed accelerator analyzes target layer parameters and operates with optimal parallelism using reasonable resources. In addition, this architecture is able to fully compute all types of BNN layers thanks to its reconfigurability, and it can achieve a higher area–speed efficiency than existing accelerators. In performance evaluation using state-of-the-art BNN topologies, the designed BNN accelerator achieved an area–speed efficiency 9.69 times higher than previous FPGA implementations and 24% higher than existing VLSI implementations for BNNs.
Style APA, Harvard, Vancouver, ISO itp.
3

Sunny, Febin P., Asif Mirza, Mahdi Nikdast, and Sudeep Pasricha. "ROBIN: A Robust Optical Binary Neural Network Accelerator." ACM Transactions on Embedded Computing Systems 20, no. 5s (2021): 1–24. http://dx.doi.org/10.1145/3476988.

Pełny tekst źródła
Streszczenie:
Domain specific neural network accelerators have garnered attention because of their improved energy efficiency and inference performance compared to CPUs and GPUs. Such accelerators are thus well suited for resource-constrained embedded systems. However, mapping sophisticated neural network models on these accelerators still entails significant energy and memory consumption, along with high inference time overhead. Binarized neural networks (BNNs), which utilize single-bit weights, represent an efficient way to implement and deploy neural network models on accelerators. In this paper, we present a novel optical-domain BNN accelerator, named ROBIN , which intelligently integrates heterogeneous microring resonator optical devices with complementary capabilities to efficiently implement the key functionalities in BNNs. We perform detailed fabrication-process variation analyses at the optical device level, explore efficient corrective tuning for these devices, and integrate circuit-level optimization to counter thermal variations. As a result, our proposed ROBIN architecture possesses the desirable traits of being robust, energy-efficient, low latency, and high throughput, when executing BNN models. Our analysis shows that ROBIN can outperform the best-known optical BNN accelerators and many electronic accelerators. Specifically, our energy-efficient ROBIN design exhibits energy-per-bit values that are ∼4 × lower than electronic BNN accelerators and ∼933 × lower than a recently proposed photonic BNN accelerator, while a performance-efficient ROBIN design shows ∼3 × and ∼25 × better performance than electronic and photonic BNN accelerators, respectively.
Style APA, Harvard, Vancouver, ISO itp.
4

Simons, Taylor, and Dah-Jye Lee. "A Review of Binarized Neural Networks." Electronics 8, no. 6 (2019): 661. http://dx.doi.org/10.3390/electronics8060661.

Pełny tekst źródła
Streszczenie:
In this work, we review Binarized Neural Networks (BNNs). BNNs are deep neural networks that use binary values for activations and weights, instead of full precision values. With binary values, BNNs can execute computations using bitwise operations, which reduces execution time. Model sizes of BNNs are much smaller than their full precision counterparts. While the accuracy of a BNN model is generally less than full precision models, BNNs have been closing accuracy gap and are becoming more accurate on larger datasets like ImageNet. BNNs are also good candidates for deep learning implementations on FPGAs and ASICs due to their bitwise efficiency. We give a tutorial of the general BNN methodology and review various contributions, implementations and applications of BNNs.
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Peisong, Xiangyu He, Gang Li, Tianli Zhao, and Jian Cheng. "Sparsity-Inducing Binarized Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (2020): 12192–99. http://dx.doi.org/10.1609/aaai.v34i07.6900.

Pełny tekst źródła
Streszczenie:
Binarization of feature representation is critical for Binarized Neural Networks (BNNs). Currently, sign function is the commonly used method for feature binarization. Although it works well on small datasets, the performance on ImageNet remains unsatisfied. Previous methods mainly focus on minimizing quantization error, improving the training strategies and decomposing each convolution layer into several binary convolution modules. However, whether sign is the only option for binarization has been largely overlooked. In this work, we propose the Sparsity-inducing Binarized Neural Network (Si-BNN), to quantize the activations to be either 0 or +1, which introduces sparsity into binary representation. We further introduce trainable thresholds into the backward function of binarization to guide the gradient propagation. Our method dramatically outperforms current state-of-the-arts, lowering the performance gap between full-precision networks and BNNs on mainstream architectures, achieving the new state-of-the-art on binarized AlexNet (Top-1 50.5%), ResNet-18 (Top-1 59.7%), and VGG-Net (Top-1 63.2%). At inference time, Si-BNN still enjoys the high efficiency of exclusive-not-or (xnor) operations.
Style APA, Harvard, Vancouver, ISO itp.
6

Liu, Chunlei, Peng Chen, Bohan Zhuang, Chunhua Shen, Baochang Zhang, and Wenrui Ding. "SA-BNN: State-Aware Binary Neural Network." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 3 (2021): 2091–99. http://dx.doi.org/10.1609/aaai.v35i3.16306.

Pełny tekst źródła
Streszczenie:
Binary Neural Networks (BNNs) have received significant attention due to the memory and computation efficiency recently. However, the considerable accuracy gap between BNNs and their full-precision counterparts hinders BNNs to be deployed to resource-constrained platforms. One of the main reasons for the performance gap can be attributed to the frequent weight flip, which is caused by the misleading weight update in BNNs. To address this issue, we propose a state-aware binary neural network (SA-BNN) equipped with the well designed state-aware gradient. Our SA-BNN is inspired by the observation that the frequent weight flip is more likely to occur, when the gradient magnitude for all quantization states {-1,1} is identical. Accordingly, we propose to employ independent gradient coefficients for different states when updating the weights. Furthermore, we also analyze the effectiveness of the state-aware gradient on suppressing the frequent weight flip problem. Experiments on ImageNet show that the proposed SA-BNN outperforms the current state-of-the-arts (e.g., Bi-Real Net) by more than 3% when using a ResNet architecture. Specifically, we achieve 61.7%, 65.5% and 68.7% Top-1 accuracy with ResNet-18, ResNet-34 and ResNet-50 on ImageNet, respectively.
Style APA, Harvard, Vancouver, ISO itp.
7

Zhao, Yiyang, Yongjia Wang, Ruibo Wang, Yuan Rong, and Xianyang Jiang. "A Highly Robust Binary Neural Network Inference Accelerator Based on Binary Memristors." Electronics 10, no. 21 (2021): 2600. http://dx.doi.org/10.3390/electronics10212600.

Pełny tekst źródła
Streszczenie:
Since memristor was found, it has shown great application potential in neuromorphic computing. Currently, most neural networks based on memristors deploy the special analog characteristics of memristor. However, owing to the limitation of manufacturing process, non-ideal characteristics such as non-linearity, asymmetry, and inconsistent device periodicity appear frequently and definitely, therefore, it is a challenge to employ memristor in a massive way. On the contrary, a binary neural network (BNN) requires its weights to be either +1 or −1, which can be mapped by digital memristors with high technical maturity. Upon this, a highly robust BNN inference accelerator with binary sigmoid activation function is proposed. In the accelerator, the inputs of each network layer are either +1 or 0, which can facilitate feature encoding and reduce the peripheral circuit complexity of memristor hardware. The proposed two-column reference memristor structure together with current controlled voltage source (CCVS) circuit not only solves the problem of mapping positive and negative weights on memristor array, but also eliminates the sneak current effect under the minimum conductance status. Being compared to the traditional differential pair structure of BNN, the proposed two-column reference scheme can reduce both the number of memristors and the latency to refresh the memristor array by nearly 50%. The influence of non-ideal factors of memristor array such as memristor array yield, memristor conductance fluctuation, and reading noise on the accuracy of BNN is investigated in detail based on a newly memristor circuit model with non-ideal characteristics. The experimental results demonstrate that when the array yield α ≥ 5%, or the reading noise σ ≤ 0.25, a recognition accuracy greater than 97% on the MNIST data set is achieved.
Style APA, Harvard, Vancouver, ISO itp.
8

Xiang, Maoyang, and Tee Hui Teo. "Implementation of Binarized Neural Networks in All-Programmable System-on-Chip Platforms." Electronics 11, no. 4 (2022): 663. http://dx.doi.org/10.3390/electronics11040663.

Pełny tekst źródła
Streszczenie:
The Binarized Neural Network (BNN) is a Convolutional Neural Network (CNN) consisting of binary weights and activation rather than real-value weights. Smaller models are used, allowing for inference effectively on mobile or embedded devices with limited power and computing capabilities. Nevertheless, binarization results in lower-entropy feature maps and gradient vanishing, which leads to a loss in accuracy compared to real-value networks. Previous research has addressed these issues with various approaches. However, those approaches significantly increase the algorithm’s time and space complexity, which puts a heavy burden on those embedded devices. Therefore, a novel approach for BNN implementation on embedded systems with multi-scale BNN topology is proposed in this paper, from two optimization perspectives: hardware structure and BNN topology, that retains more low-level features throughout the feed-forward process with few operations. Experiments on the CIFAR-10 dataset indicate that the proposed method outperforms a number of current BNN designs in terms of efficiency and accuracy. Additionally, the proposed BNN was implemented on the All Programmable System on Chip (APSoC) with 4.4 W power consumption using the hardware accelerator.
Style APA, Harvard, Vancouver, ISO itp.
9

Zhang, Longlong, Xuebin Tang, Xiang Hu, Tong Zhou, and Yuanxi Peng. "FPGA-Based BNN Architecture in Time Domain with Low Storage and Power Consumption." Electronics 11, no. 9 (2022): 1421. http://dx.doi.org/10.3390/electronics11091421.

Pełny tekst źródła
Streszczenie:
With the increasing demand for convolutional neural networks (CNNs) in many edge computing scenarios and resource-limited settings, researchers have made efforts to apply lightweight neural networks on hardware platforms. While binarized neural networks (BNNs) perform excellently in such tasks, many implementations still face challenges such as an imbalance between accuracy and computational complexity, as well as the requirement for low power and storage consumption. This paper first proposes a novel binary convolution structure based on the time domain to reduce resource and power consumption for the convolution process. Furthermore, through the joint design of binary convolution, batch normalization, and activation function in the time domain, we propose a full-BNN model and hardware architecture (Model I), which keeps the values of all intermediate results as binary (1 bit) to reduce storage requirements by 75%. At the same time, we propose a mixed-precision BNN structure (model II) based on the sensitivity of different layers of the network to the calculation accuracy; that is, the layer sensitive to the classification result uses fixed-point data, and the other layers use binary data in the time domain. This can achieve a balance between accuracy and computing resources. Lastly, we take the MNIST dataset as an example to test the above two models on the field-programmable gate array (FPGA) platform. The results show that the two models can be used as neural network acceleration units with low storage requirements and low power consumption for classification tasks under the condition that the accuracy decline is small. The joint design method in the time domain may further inspire other computing architectures. In addition, the design of Model II has certain reference significance for the design of more complex classification tasks.
Style APA, Harvard, Vancouver, ISO itp.
10

Kim, HyunJin, Mohammed Alnemari, and Nader Bagherzadeh. "A storage-efficient ensemble classification using filter sharing on binarized convolutional neural networks." PeerJ Computer Science 8 (March 29, 2022): e924. http://dx.doi.org/10.7717/peerj-cs.924.

Pełny tekst źródła
Streszczenie:
This paper proposes a storage-efficient ensemble classification to overcome the low inference accuracy of binary neural networks (BNNs). When external power is enough in a dynamic powered system, classification results can be enhanced by aggregating outputs of multiple BNN classifiers. However, memory requirements for storing multiple classifiers are a significant burden in the lightweight system. The proposed scheme shares the filters from a trained convolutional neural network (CNN) model to reduce storage requirements in the binarized CNNs instead of adopting the fully independent classifier. While several filters are shared, the proposed method only trains unfrozen learnable parameters in the retraining step. We compare and analyze the performances of the proposed ensemble-based systems depending on various ensemble types and BNN structures on CIFAR datasets. Our experiments conclude that the proposed method using the filter sharing can be scalable with the number of classifiers and effective in enhancing classification accuracy. With binarized ResNet-20 and ReActNet-10 on the CIFAR-100 dataset, the proposed scheme can achieve 56.74% and 70.29% Top-1 accuracies with 10 BNN classifiers, which enhances performance by 7.6% and 3.6% compared with that using a single BNN classifier.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii