Gotowa bibliografia na temat „BINARIZATION TECHNIQUE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „BINARIZATION TECHNIQUE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "BINARIZATION TECHNIQUE"
Thepade, Sudeep, Rik Das i Saurav Ghosh. "A Novel Feature Extraction Technique Using Binarization of Bit Planes for Content Based Image Classification". Journal of Engineering 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/439218.
Pełny tekst źródłaYu, Young-Jung. "Document Image Binarization Technique using MSER". Journal of the Korea Institute of Information and Communication Engineering 18, nr 8 (31.08.2014): 1941–47. http://dx.doi.org/10.6109/jkiice.2014.18.8.1941.
Pełny tekst źródłaMAKRIDIS, MICHAEL, i N. PAPAMARKOS. "AN ADAPTIVE LAYER-BASED LOCAL BINARIZATION TECHNIQUE FOR DEGRADED DOCUMENTS". International Journal of Pattern Recognition and Artificial Intelligence 24, nr 02 (marzec 2010): 245–79. http://dx.doi.org/10.1142/s0218001410007889.
Pełny tekst źródłaCHI, ZHERU, i QING WANG. "DOCUMENT IMAGE BINARIZATION WITH FEEDBACK FOR IMPROVING CHARACTER SEGMENTATION". International Journal of Image and Graphics 05, nr 02 (kwiecień 2005): 281–309. http://dx.doi.org/10.1142/s0219467805001768.
Pełny tekst źródłaPagare, Mr Aniket. "Document Image Binarization using Image Segmentation Technique". International Journal for Research in Applied Science and Engineering Technology 9, nr VII (15.07.2021): 1173–76. http://dx.doi.org/10.22214/ijraset.2021.36597.
Pełny tekst źródłaAbbood, Alaa Ahmed, Mohammed Sabbih Hamoud Al-Tamimi, Sabine U. Peters i Ghazali Sulong. "New Combined Technique for Fingerprint Image Enhancement". Modern Applied Science 11, nr 1 (19.12.2016): 222. http://dx.doi.org/10.5539/mas.v11n1p222.
Pełny tekst źródłaAdhari, Firman Maulana, Taufik Fuadi Abidin i Ridha Ferdhiana. "License Plate Character Recognition using Convolutional Neural Network". Journal of Information Systems Engineering and Business Intelligence 8, nr 1 (26.04.2022): 51–60. http://dx.doi.org/10.20473/jisebi.8.1.51-60.
Pełny tekst źródłaGarcía, José, Paola Moraga, Matias Valenzuela, Broderick Crawford, Ricardo Soto, Hernan Pinto, Alvaro Peña, Francisco Altimiras i Gino Astorga. "A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems". Computational Intelligence and Neuroscience 2019 (16.09.2019): 1–16. http://dx.doi.org/10.1155/2019/3238574.
Pełny tekst źródłaRozen, Tal, Moshe Kimhi, Brian Chmiel, Avi Mendelson i Chaim Baskin. "Bimodal-Distributed Binarized Neural Networks". Mathematics 10, nr 21 (3.11.2022): 4107. http://dx.doi.org/10.3390/math10214107.
Pełny tekst źródłaJoseph, Manju, i Jijina K. P. Jijina K.P. "Simple and Efficient Document Image Binarization Technique For Degraded Document Images". International Journal of Scientific Research 3, nr 5 (1.06.2012): 217–20. http://dx.doi.org/10.15373/22778179/may2014/65.
Pełny tekst źródłaRozprawy doktorskie na temat "BINARIZATION TECHNIQUE"
Ringdahl, Benjamin. "Gaussian Process Multiclass Classification : Evaluation of Binarization Techniques and Likelihood Functions". Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-87952.
Pełny tekst źródłaLowther, Scott Andrew. "Document sorting and logo recognition using image processing techniques". Thesis, Queensland University of Technology, 2002. https://eprints.qut.edu.au/36188/1/36188_Lowther_2002.pdf.
Pełny tekst źródłaKesiman, Made Windu Antara. "Document image analysis of Balinese palm leaf manuscripts". Thesis, La Rochelle, 2018. http://www.theses.fr/2018LAROS013/document.
Pełny tekst źródłaThe collection of palm leaf manuscripts is an important part of Southeast Asian people’s culture and life. Following the increasing of the digitization projects of heritage documents around the world, the collection of palm leaf manuscripts in Southeast Asia finally attracted the attention of researchers in document image analysis (DIA). The research work conducted for this dissertation focused on the heritage documents of the collection of palm leaf manuscripts from Indonesia, especially the palm leaf manuscripts from Bali. This dissertation took part in exploring DIA researches for palm leaf manuscripts collection. This collection offers new challenges for DIA researches because it uses palm leaf as writing media and also with a language and script that have never been analyzed before. Motivated by the contextual situations and real conditions of the palm leaf manuscript collections in Bali, this research tried to bring added value to digitized palm leaf manuscripts by developing tools to analyze, to transliterate and to index the content of palm leaf manuscripts. These systems aim at making palm leaf manuscripts more accessible, readable and understandable to a wider audience and, to scholars and students all over the world. This research developed a DIA system for document images of palm leaf manuscripts, that includes several image processing tasks, beginning with digitization of the document, ground truth construction, binarization, text line and glyph segmentation, ending with glyph and word recognition, transliteration and document indexing and retrieval. In this research, we created the first corpus and dataset of the Balinese palm leaf manuscripts for the DIA research community. We also developed the glyph recognition system and the automatic transliteration system for the Balinese palm leaf manuscripts. This dissertation proposed a complete scheme of spatially categorized glyph recognition for the transliteration of Balinese palm leaf manuscripts. The proposed scheme consists of six tasks: the text line and glyph segmentation, the glyph ordering process, the detection of the spatial position for glyph category, the global and categorized glyph recognition, the option selection for glyph recognition and the transliteration with phonological rules-based machine. An implementation of knowledge representation and phonological rules for the automatic transliteration of Balinese script on palm leaf manuscript is proposed. The adaptation of a segmentation-free LSTM-based transliteration system with the generated synthetic dataset and the training schemes at two different levels (word level and text line level) is also proposed
DOBHAL, HEMU. "BINARIZATION TECHNIQUE FOR THE DEGRADED DOCUMENT IMAGES AND INSCRIPTION IMAGES". Thesis, 2014. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15429.
Pełny tekst źródłaGao, Jhe-Wei, i 高哲偉. "Improving SIFT Matching Efficiency Using Hashing and Descriptor Binarization Techniques". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/zhrdjt.
Pełny tekst źródła大同大學
資訊工程學系(所)
102
Scale-invariant feature transform (SIFT) is an algorithm in computer vision. Although it can achieve high accuracy in image matching, the speed of image matching is slow. The thesis presents a method that uses hashing and descriptor binarization to improve SIFT matching efficiency. Our method applies SIFT descriptor binarization to reduce the cost of image matching. It decreases the computational complexity with only a little loss of matching accuracy. Also, our method utilizes hashing to decrease the quantity of the matching pairs substantially and hence reduce the matching time. The experimental result demonstrates that, with only a small decrease in accuracy, the matching speed of our method is about 2500 times faster than that of SIFT linear matching. Moreover, our hashing method can be applied to other methods that adopt SIFT descriptor binarization.
Książki na temat "BINARIZATION TECHNIQUE"
Chaki, Nabendu, Soharab Hossain Shaikh i Khalid Saeed. Exploring Image Binarization Techniques. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1907-1.
Pełny tekst źródłaSaeed, Khalid, Nabendu Chaki i Soharab Hossain Shaikh. Exploring Image Binarization Techniques. Springer London, Limited, 2014.
Znajdź pełny tekst źródłaSaeed, Khalid, Nabendu Chaki i Soharab Hossain Shaikh. Exploring Image Binarization Techniques. Springer, 2014.
Znajdź pełny tekst źródłaSaeed, Khalid, Nabendu Chaki i Soharab Hossain Shaikh. Exploring Image Binarization Techniques. Springer (India) Private Limited, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "BINARIZATION TECHNIQUE"
Chaki, Nabendu, Soharab Hossain Shaikh i Khalid Saeed. "A New Image Binarization Technique Using Iterative Partitioning". W Exploring Image Binarization Techniques, 17–44. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1907-1_3.
Pełny tekst źródłaSokratis, Vavilis, Ergina Kavallieratou, Roberto Paredes i Kostas Sotiropoulos. "A Hybrid Binarization Technique for Document Images". W Learning Structure and Schemas from Documents, 165–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22913-8_8.
Pełny tekst źródłaDatta, Soumik, Pawan Kumar Singh, Ram Sarkar i MitaNasipuri. "A New Image Binarization Technique by Classifying Document Images". W Lecture Notes in Computer Science, 539–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45062-4_74.
Pełny tekst źródłaGatos, Basilios, Ioannis Pratikakis i Stavros J. Perantonis. "An Adaptive Binarization Technique for Low Quality Historical Documents". W Document Analysis Systems VI, 102–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28640-0_10.
Pełny tekst źródłaAntony, P. J., C. K. Savitha i U. J. Ujwal. "Efficient Binarization Technique for Handwritten Archive of South Dravidian Tulu Script". W Emerging Research in Computing, Information, Communication and Applications, 651–66. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4741-1_56.
Pełny tekst źródłaChoudhary, Amit, Savita Ahlawat i Rahul Rishi. "A Neural Approach to Cursive Handwritten Character Recognition Using Features Extracted from Binarization Technique". W Complex System Modelling and Control Through Intelligent Soft Computations, 745–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12883-2_26.
Pełny tekst źródłaSaha, Satadal, Subhadip Basu i Mita Nasipuri. "Binarization of Document Images Using Hierarchical Histogram Equalization Technique with Linearly Merged Membership Function". W Advances in Intelligent and Soft Computing, 639–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27443-5_74.
Pełny tekst źródłaChaki, Nabendu, Soharab Hossain Shaikh i Khalid Saeed. "Introduction". W Exploring Image Binarization Techniques, 1–4. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1907-1_1.
Pełny tekst źródłaChaki, Nabendu, Soharab Hossain Shaikh i Khalid Saeed. "A Comprehensive Survey on Image Binarization Techniques". W Exploring Image Binarization Techniques, 5–15. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1907-1_2.
Pełny tekst źródłaChaki, Nabendu, Soharab Hossain Shaikh i Khalid Saeed. "A Framework for Creating Reference Image for Degraded Document Images". W Exploring Image Binarization Techniques, 45–63. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1907-1_4.
Pełny tekst źródłaStreszczenia konferencji na temat "BINARIZATION TECHNIQUE"
Papamarkos, Nikos. "A technique for fuzzy document binarization". W the 2001 ACM Symposium. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/502187.502210.
Pełny tekst źródłaRanganatha D i Ganga Holi. "Hybrid binarization technique for degraded document images". W 2015 IEEE International Advance Computing Conference (IACC). IEEE, 2015. http://dx.doi.org/10.1109/iadcc.2015.7154834.
Pełny tekst źródła"IMPROVED ADAPTIVE BINARIZATION TECHNIQUE FOR DOCUMENT IMAGE ANALYSIS". W International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0002057003170321.
Pełny tekst źródłaInbar, H., E. Marom i N. Konforti. "Error diffusion binarization methods for joint transform correlators". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.thq6.
Pełny tekst źródłaMousa, Usama W. A., Hossam E. Abd El Munim i Mahmoud I. Khalil. "A Multistage Binarization Technique for the Degraded Document Images". W 2018 13th International Conference on Computer Engineering and Systems (ICCES). IEEE, 2018. http://dx.doi.org/10.1109/icces.2018.8639459.
Pełny tekst źródłaJindal, Harshit, Manoj Kumar, Akhil Tomar i Ayush Malik. "Degraded Document Image Binarization using Novel Background Estimation Technique". W 2021 6th International Conference for Convergence in Technology (I2CT). IEEE, 2021. http://dx.doi.org/10.1109/i2ct51068.2021.9418084.
Pełny tekst źródłaMunshi, Paridhi, i Suman K. Mitra. "A rough-set based binarization technique for fingerprint images". W 2012 IEEE International Conference on Signal Processing, Computing and Control (ISPCC). IEEE, 2012. http://dx.doi.org/10.1109/ispcc.2012.6224360.
Pełny tekst źródłaKamath K. M., Shreyas, Rahul Rajendran, Karen Panetta i Sos Agaian. "A human visual based binarization technique for histological images". W SPIE Commercial + Scientific Sensing and Imaging, redaktorzy Sos S. Agaian i Sabah A. Jassim. SPIE, 2017. http://dx.doi.org/10.1117/12.2262815.
Pełny tekst źródłaTamilselvan, S., i S. G. Sowmya. "Content retrieval from degraded document images using binarization technique". W 2014 International Conference On Computation of Power , Energy, Information and Communication (ICCPEIC). IEEE, 2014. http://dx.doi.org/10.1109/iccpeic.2014.6915401.
Pełny tekst źródłaSrivastava, Saumya, i Sudip Sanyal. "Unsupervised learning technique for binarization of gray scale text images". W 2014 Annual IEEE India Conference (INDICON). IEEE, 2014. http://dx.doi.org/10.1109/indicon.2014.7030453.
Pełny tekst źródła