Gotowa bibliografia na temat „Bilevel optimal control”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Bilevel optimal control”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Bilevel optimal control"
Mehlitz, Patrick, i Gerd Wachsmuth. "Weak and strong stationarity in generalized bilevel programming and bilevel optimal control". Optimization 65, nr 5 (31.12.2015): 907–35. http://dx.doi.org/10.1080/02331934.2015.1122007.
Pełny tekst źródłaYe, Jane J. "Optimal Strategies For Bilevel Dynamic Problems". SIAM Journal on Control and Optimization 35, nr 2 (marzec 1997): 512–31. http://dx.doi.org/10.1137/s0363012993256150.
Pełny tekst źródłaBonnel, Henri, i Jacqueline Morgan. "Semivectorial Bilevel Convex Optimal Control Problems: Existence Results". SIAM Journal on Control and Optimization 50, nr 6 (styczeń 2012): 3224–41. http://dx.doi.org/10.1137/100795450.
Pełny tekst źródłaDempe, S. "Computing optimal incentives via bilevel programming". Optimization 33, nr 1 (styczeń 1995): 29–42. http://dx.doi.org/10.1080/02331939508844061.
Pełny tekst źródłaYe, Jianxiong, i An Li. "Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control". Journal of Industrial & Management Optimization 13, nr 5 (2017): 1–21. http://dx.doi.org/10.3934/jimo.2018101.
Pełny tekst źródłaLin, Hongzhi. "Optimal Design of Cordon Sanitaire for Regular Epidemic Control". Advances in Civil Engineering 2021 (1.06.2021): 1–11. http://dx.doi.org/10.1155/2021/5581758.
Pełny tekst źródłaAtiya Wardil *, Othman, i Samera Khaleel Ibrahim. "The Bi-level Programming Approach to Improve the Inventory Control System with a Practical Application". Journal of Economics and Administrative Sciences 30, nr 142 (6.09.2024): 509–31. http://dx.doi.org/10.33095/gd8dy062.
Pełny tekst źródłaAmouzegar, Mahyar A., i Khosrow Moshirvaziri. "Determining optimal pollution control policies: An application of bilevel programming". European Journal of Operational Research 119, nr 1 (listopad 1999): 100–120. http://dx.doi.org/10.1016/s0377-2217(98)00336-1.
Pełny tekst źródłaKnauer, Matthias. "Fast and save container cranes as bilevel optimal control problems". Mathematical and Computer Modelling of Dynamical Systems 18, nr 4 (sierpień 2012): 465–86. http://dx.doi.org/10.1080/13873954.2011.642388.
Pełny tekst źródłaChen, Yi, Kadhim Hayawi, Meikai Fan, Shih Yu Chang, Jie Tang, Ling Yang, Rui Zhao, Zhongqi Mao i Hong Wen. "A Bilevel Optimization Model Based on Edge Computing for Microgrid". Sensors 22, nr 20 (11.10.2022): 7710. http://dx.doi.org/10.3390/s22207710.
Pełny tekst źródłaRozprawy doktorskie na temat "Bilevel optimal control"
Mehlitz, Patrick. "Contributions to complementarity and bilevel programming in Banach spaces". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-227091.
Pełny tekst źródłaFisch, Florian [Verfasser]. "Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems / Florian Fisch". München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441756/34.
Pełny tekst źródłaStibbe, Hilke Isabell [Verfasser], i Ekaterina [Akademischer Betreuer] Kostina. "Special Bilevel Quadratic Problems for Construction of Worst-Case Feedback Control in Linear-Quadratic Optimal Control Problems under Uncertainties / Hilke Isabell Stibbe ; Betreuer: Ekaterina Kostina". Marburg : Philipps-Universität Marburg, 2019. http://d-nb.info/1202110509/34.
Pełny tekst źródłaFisch, Florian [Verfasser], Florian [Akademischer Betreuer] Holzapfel i Matthias [Akademischer Betreuer] Gerdts. "Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems / Florian Fisch. Gutachter: Florian Holzapfel ; Matthias Gerdts. Betreuer: Florian Holzapfel". München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/1013435443/34.
Pełny tekst źródłaPalagachev, Konstantin [Verfasser], Matthias [Akademischer Betreuer] Gerdts, Matthias [Gutachter] Gerdts i Sebastian [Gutachter] Sager. "Mixed-Integer Optimal Control and Bilevel Optimization: Vanishing Constraints and Scheduling Tasks / Konstantin Palagachev ; Gutachter: Matthias Gerdts, Sebastian Sager ; Akademischer Betreuer: Matthias Gerdts ; Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik". Neubiberg : Universitätsbibliothek der Universität der Bundeswehr München, 2017. http://d-nb.info/1172216533/34.
Pełny tekst źródłaDutto, Rémy. "Méthode à deux niveaux et préconditionnement géométrique en contrôle optimal. Application au problème de répartition de couple des véhicules hybrides électriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP088.
Pełny tekst źródłaMotivated by the torque split and gear shift industrial problem of hybrid electric vehicles, this work mainly proposes two new indirect optimal control problem methods. The first one is the Macro-Micro method, which is based on a bilevel decomposition of the optimal control problem and uses Bellman’s value functions at fixed times. These functions are known to be difficult to create. The main idea of this method is to approximate these functions by neural networks, which leads to a hierarchical resolution of a low dimensional optimization problem and a set of independent optimal control problems defined on smaller time intervals. The second one is a geometric preconditioning method, which allows a more efficient resolution of the optimal control problem. This method is based on a geometrical interpretation of the Pontryagin’s co-state and on the Mathieu transformation, and uses a linear diffeomorphism which transforms an ellipse into a circle. These two methods, presented separately, can be combined and lead together to a fast, robust and light resolution for the torque split and gear shift optimal control problem, closer to the embedded requirements
Części książek na temat "Bilevel optimal control"
Mehlitz, Patrick, i Gerd Wachsmuth. "Bilevel Optimal Control: Existence Results and Stationarity Conditions". W Bilevel Optimization, 451–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52119-6_16.
Pełny tekst źródłaMarcotte, Patrice, i Gilles Savard. "A Bilevel Programming Approach to Optimal Price Setting". W Decision & Control in Management Science, 97–117. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3561-1_6.
Pełny tekst źródłaBonnel, Henri, i Jacqueline Morgan. "Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems". W Computational and Analytical Mathematics, 45–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7621-4_4.
Pełny tekst źródłaDempe, Stephan, Felix Harder, Patrick Mehlitz i Gerd Wachsmuth. "Analysis and Solution Methods for Bilevel Optimal Control Problems". W International Series of Numerical Mathematics, 77–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_4.
Pełny tekst źródłaPalagachev, Konstantin D., i Matthias Gerdts. "Numerical Approaches Towards Bilevel Optimal Control Problems with Scheduling Tasks". W Math for the Digital Factory, 205–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63957-4_10.
Pełny tekst źródłaPalagachev, Konstantin, i Matthias Gerdts. "Exploitation of the Value Function in a Bilevel Optimal Control Problem". W IFIP Advances in Information and Communication Technology, 410–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-55795-3_39.
Pełny tekst źródłaKnauer, Matthias, i Christof Büskens. "Hybrid Solution Methods for Bilevel Optimal Control Problems with Time Dependent Coupling". W Recent Advances in Optimization and its Applications in Engineering, 237–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12598-0_20.
Pełny tekst źródłaBock, Hans Georg, Ekaterina Kostina, Marta Sauter, Johannes P. Schlöder i Matthias Schlöder. "Numerical Methods for Diagnosis and Therapy Design of Cerebral Palsy by Bilevel Optimal Control of Constrained Biomechanical Multi-Body Systems". W International Series of Numerical Mathematics, 21–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Bilevel optimal control"
Samadi, Sepideh, Daniel Burbano i Farzad Yousefian. "Achieving Optimal Complexity Guarantees for a Class of Bilevel Convex Optimization Problems". W 2024 American Control Conference (ACC), 2206–11. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10644364.
Pełny tekst źródłaMinciardi, R., i M. Robba. "Bilevel approach for the optimal control of interconnected microgrids". W 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039770.
Pełny tekst źródłaSuryan, Varun, Ankur Sinha, Pekka Malo i Kalyanmoy Deb. "Handling inverse optimal control problems using evolutionary bilevel optimization". W 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. http://dx.doi.org/10.1109/cec.2016.7744019.
Pełny tekst źródłaEnmin Feng, Zhigang Jiang, Yanjie Li i Zhilong Xiu. "The Optimal Properties of Nonlinear Bilevel Multi-stage Dynamic System". W 2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/wcica.2006.1712507.
Pełny tekst źródłaTomasi, Matilde, i Alessio Artoni. "Identification of Motor Control Objectives in Human Locomotion via Multi-Objective Inverse Optimal Control". W ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-89536.
Pełny tekst źródłaFisch, Florian, Jakob Lenz, Florian Holzapfel i Gottfried Sachs. "On the Solution of Bilevel Optimal Control Problems to Increase the Fairness in Air Races". W AIAA Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-7625.
Pełny tekst źródła